Homework 6
SOLUTIONS!

1. Problem 4.25 from the book (p 172)
Solution:
First we must determine the PDF of Y
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So, That means that the Expectation is
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Thus the Variance is
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2. Let X ~ U(a,b). Derive the CDF of X

Solution:
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3. Let X ~ U(a,b). Derive ¢ 5, the % Quantile or Median of the distribution of X

Solution:

By Definition, ¢ 5 is the (smallest) value such that P(X < ¢5) = F (¢5) = .5
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4. Let X ~ U(a,b) Show that the MGF is

M

Note: The MGF is written this way because

tb ta
el if¢t£0
H=1{J to-a !
x(®) { 1 ift=0
etb_eta

is of indeterminate form at
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t = 0 (it comes out to be %). So, we must show that This indeterminate form really
works out to be 1 at ¢ = 0. We Can do this by showing that z}/ir% M, (t) exists. If
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the limit exists, then M (t)|i=0 = 71ir% M, (t)
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So, what happens when ¢t = 07 We need the MGF to be defined at t = 0 and we
see that

My(t)li=0 = EleXi=o
Cbt _ eat
- t(b—a) =0
0
0

This is an indeterminate form, which means that M, (¢)|t=0 = limso M (), if
the limit exists
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Thus, we conclude that
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