The Gamma Function

1 Definition

e Here we will go over the Gamma Function, a function used to verify the Gamma
distribution and the Normal distribution.

Definition 1. The Gamma Function is the function T' (defined for non-negative
values) such that
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e This will be useful in solving integrals of the form fooo ri e %dx

e The Gamma function also has a useful property summarized in the following the-
orem:

Theorem 1. For allt > 1
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Proof. Let t > 1. The by using integration by parts we see that
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So, We must evaluate lim —x'~'e™® (and show that it is equal to 0). We know
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If lim 2t~ le* exists. So we consider
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So, lim x;: is of indeterminant form. This means we can apply L’Hospital’s Rule
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to evaluate lim Z—. So,
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This is still of an indeterminant form. If we apply L’Hospital’s Rule we will still
have the same problem because we have x raised to a positive power going to oo,
but if we apply L’Hospital’s Rule enough times then we will have z raised to a
negative power, which will then go to 0. Specifically we want to apply L’Hospital’s
Rule enough times so that the power on x is negative. This means we want to
apply the rule the smallest integer value larger than ¢ — 1 number of time. We will
call this value T'= [t — 1], where [z] is what you get when you round z up (note
T>t—1). So,
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L’Hospital’s Rule T'— 1 more times (7" total times)
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So, We see that this implies that
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and thus our proof is shown. ]



e Note that this property has a particular implication when ¢ is an integer:

Theorem 2.

Let t be a positive integer. Then:
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e One other property about the Gamma Function that we will need (and simply
state without proof) is summarized in the following theorem:

Theorem 3.

2 Exercises

r(}) =7

Evaluate the following Integrals

1. fooow5e_“dx
2. fooozrne*‘”zdw
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3 Solutions

1. fooo e *dx
Solution:
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2. Jy° atte *dg
Solution:
Integrating by using Substituion we see
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Integrating by using Substituion we see
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