Transformations

1 Motivation

e QOur last section of the course Deals with the transformation of Random Variables

e A situation is called a transformation of a random variable when we have a random
variable, X, with a given distribution (in the real world this random variable would
be some sort of measurement) and then we apply some function A to that random
variable.

e What we are concerened with is what is the distribution of the new random variable
h(X)

e There are multiple methods that we have to determine what the distribution of
h(X) is.

e The rest of this leture will be spent establishing some of those methods

2 Method of Distribution Function

Let X be a R.V. with cdf Fx(z) and let U = h(X). Steps:
1. Find formula for CDF of U based on the distribution of X
2. ie. Find Fy(u) = P(U <u) = P(h(X) < u)

3. Differentiate Fy7(u) to find pdf of U (only works in the contounous case)

2.1 Examples
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2. Let U = X2. Find the pdf of U
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3. Let X and Y have the joint pdf:
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Find the pdf of U = X + Y
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3 Method of Transformation (Jacobian)

Let X be a R.V. with pdf fx(x) and let U = h(X). Steps:
1. Verify that h(X) is either increasing or decreasing over support of X
2. Find A~ !(u) such that h(X) =U = h~}(U) = X
3. Find derivative %h_l(u)

4. fu(u) = fx (™ ()l g5h~" ()]

3.1 Examples

1. Let U =2X — 1. Find pdf of U.
i. h(X)=2X —1is increasing in X
ii. h(X)=2X -1=hr"1(U)=YF
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2. Let U = X2. Find the pdf of U

i. h(X) = X2 is increasing in X. Note: This is because X only ranges from 0 to

1.

ii. h(X)=X?%= h~Y(U) =+U. Again this because X does not take on negative
values.
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4 Method of MGF

Let X be a R.V. with MGF Mx(t) and let U = h(X). Steps:
1. Note:

My(t) = E[e"]

2. Identify the form of M (t) as that of a known MGF
3. Based on the MGF, identify the pdf of U

4.1 Examples
1. Let X ~N(0,1). Let U = 2X. Find the pdf of U
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2. Let X,Y ~ N(0,1) and let X and Y be independent. Find the pdf of U = X +Y
']

(X+Y ]

S|

My(t) =

Il
&

€X H-Yt]

I
S|

I I
= S|
ﬁwﬁﬁﬁ

5 Exercises

Let X have the following pdf
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1. Find the pdf of U = | X|
2. Find the pdf of W = X3
3. Let X,Y ~ Exp(1) and let X and Y be independent. find the pdf of U = X +Y

6 Solutions
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