1 Random Variables

e Up until now, we have discussed probability in terms of events and samples spaces
of probability experiments

e Anothe way we can discuss probability is in terms of Random Variables

e Random Variables
— A Random Variable is a numerical representation of the outcome of an ex-

periment

e Essentially, we can think of a random variable as a numerical summary of what
happened in a probability experiment

1.1 Examples

e Consider the experiment where we flip a coin
— We know that the sample Space is S = {H,T'}
— Let X = # of observed heads in this experiment
If the coin lands heads up, then X =1
If the coin lands tails up, then X =0

This means that we can talk about the event that the coin lands heads up or
tails up in terms of whether X =1 or X =0

e Suppose we instead flip two coins instead of just one
— We know that the sample space would be S = {(H, H), (H,T),(T,H),(T,T)}
— Again we let X =# of obsereved heads

Then if both coins come up tails, then X =0

If either coin comes up heads, then X =1

If both coins come up heads, then X = 2

e Suppose we have a spinner (like the one used in the game twister) that we can
flick. Eventually the spinner will stop moving; we will consider this as stopping at
a point on the circle. suppose that each point on the circle corresponds to a value
between 0 and 1, where at the very top of the spinner is counted as 1 and the very
bottom is counted as 0.5. the rest of the points are continuous around the spinner

e Note: 0 is not actually included as a possible value

— Here, the spinner can land on any value between 0 and 1, including 1 but not
including 0

— This means that the sample space is S = (0, 1]
— Let Y be the value that the spinner points to



— This means that instead of talking about what value the spinner points to,
we can focus on the value of Y instead

— For example, we can talk about events in terms of Y, suchas Y = .5, Y < .5,
and .35 <Y < .75

1.2 The Support of a Random Variable

Note: Every sample point in the original probability experiment’s sample space
corresponds with a potential value of the corresponding random variable

This means that the sample space of the probability experiment is transformed
into a ntoher set. We call this set the Support of the random vairable
Support of a random variable

— The Support of a random variable is defined to be the set of all possible values

of that random variable

The support for X in the first experiment (with one coin) would have simply been

S ={0,1}

The support for X in the second experiment (with two coins) would have been
S =140,1,2}

The support for Y in the third experiment (with the spinner) would have been
S = (Oa 1]

Note: We use S for both the sample space and for the support. This is for two
reasons

1. Once we start working with random variables, we do not need to think in
terms of the original probability experiment

2. We can think of the support of the random variable as teh random variable
analog of the sample space

2 Discrete Random Variables

There are (primarily) two kinds of Random Variables

1. Discrete Random variables : Discrete Random variables have a support that
either has a finite or a countably infinite number of elements

2. Continuous Random variables: Continuous Random Variables have a support
that has an uncountably infinite numbe of elements (basically they contain
an interval of numbers)

For now we will focus on Discrete Random Variables



3 Probability Distribution Functions (PDFs)

Like with a probability experiment, we know that among all of the possible values
of the Random variable, the random variable must evaluate to one of the possible
out comes

What we often want to know is how likely is the random value to be each one of
those potential values

In other words, we want to know how the total probability is distributed among
the different potential values

We often summarize this with what is called a Probability Distribution Function,
or PDF for short.

Probability Distribution Funtion
— A Probability Distribution Function for a random variable X is the function
Py (®) such that p, (©) = P(X = ©)

Like our Probability Rules, there are rules that all PDFs for discrete random
variables follow:

Let X be a discrete RV(Random Variable) with support S and PDF p,. Then,
1. 0<p,(z) <1Vx € S (Remember V = “For all”)
2. Z@espx(©) =1

4 Example of a Discerete RV

Suppose you are studying family size in the state of CT. Let X be the number of
children in the next family you observed

x = 0|1 ]2]3
PX=x)|1]5]2].2

Suppose X has the following PDF:

This table can be used to give us values for our PDFs
For example P(X =0) = .1
Also

P(X<2) = P(X=0)+P(X=1)



5 Expectation of a discrete RV

e One thing we often want to know about is what value do we expect the random
variable to be. one way we determine this is trhough a process called Ezpectation

e Expectation

— Let X be a random variable with support S and PDF p,, and let g(®) be a
real valued function that is defined V® € S. Then the expected value of g(X)
(denoted E[g(X)]) is defined to be

Elg(X)] =Y 9y)px ()

yeSs

e When ¢(X) is just g(X) = X, the identity function, then it is called the mean of
X (in additiona to being refered to as the expected value of X)

e When g(X) is g(X) = (X — E[X])?, then E[g(X)] is also refered to the variance
of X. The variance of X is often denoted V[X].

e Note: The use of the terms mean and variance is not by mistake. these terms are
used because the corresponding expecations are designed to capture the concepts
of the mean (where is the middle) and the variance (how spread out) of the dis-
tribution of the probability of a RV in the same way that our definitions of mean
and variance are meant to caputre where the location (mean) and how spread out
(variance) a data set (or a set of numbers) is.

6 Expectation Theorems
e Let X be a discrete RV with support S and PDF p
e Let ¢ be a real valued constant. Then,
El]=c
Proof.

El]] = Y epy(2)

z€eS

= chX (z) < Pulling out a factor of ¢
zeS
= ¢ < By Second rule of Discrete PDFs



e Let ¢ be a real valued constant and let g be a real valued function that is defined
over the support of X. Then,

Eleg(X)] = cE[g(X)]
Proof.

Eleg(X)] = Y cg(X)py(x)

eSS

= cZg(X)pX (z) + Pulling out a factor of ¢
z€S
= c¢F[g(X)] + Definition of E[g(X)]

O]

e Let g1, 992,93, ..., gn be n real valued functions that are all defined over the support
of X. Then,

n

ED gi(X)]) =) Elgi(X)]
=1

i=1
Proof.
ED g(X)] = YD ai(X)pi()
i=1 z€S i=1

n
= Z Z 9i(X)p, (x) < Simply rearranging the order of the terms.
i=1 zeS
This is just the commutative law of addition

— ZE[QZ(X)] < Defintion of E[g;(X)]
i=1

e Variance Equality
V[X] = B[(X - E[X])?] = B[X?] - (B[X])*

Note: (E[X])? is often denoted as E?[X]



E[(X - E[X])?]
X2 —2B[X] + E*[X]]
X% E[-2X E[X]] + E[E?[X]] + By the Third Expectation Rule

—2FE[X] and E?[X] are both constant values
E[X? - 2E?[X] + E*[X]
E[X? — E?[X]



