The Beta Distirbution

1 Definition & Motivation

e Our last continuous Distribution is the Beta distribution

e The Beta distribution is very useful for modeling bounded random variables with
a non uniform distribution of probability

e The Beta distribution is particularly useful in studying Bayestian statistics
Definition 1. We say that the continuous Random Variable X has a Beta distri-
bution with parameters « and 8 when X has the PDF
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Where 0 < «, 0 < 3. We denote this X ~ Beta(a, ) (Note the support of X is
S =1(0,1)).

2 The Beta Function

e To Help us with the Verification, mean and variance derivations we will make use
of what we call the Beta function:

Definition 2. The Beta function B(a,b) is a function of two positive values a and
b, and is defined to be:
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e We we also use the following theorem (whose proof we leave for te end of the
lecture):

Theorem 1. Let a and b be positive real values. Then,
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e Because of this theorem, often times the pdf of X ~ Beta(c, [3) is simplified to be:
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3 Verify, Mean, Variance

Let X ~ Beta(a, 3)
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2. Mean
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> 0 by definition and since 0 < =z < 1 it is

true that 0 < 1 — 2 < 1. This in turn implies that 0 < z®! < 1 and
0 < (1—2)?71 < 1. Since f,(z) is the product of these three positve terms



Proof.
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4 The Beta Function Theorem Proof

Here we will present the proof of the Beta function Theorem, which states that for all
positive real values a and b,
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B(a,b) = T(ath)

Proof. Let a and b be real positive values and consider the following;:

L(a)l'(b) = </ u“le”du> </ vble”dv> < Definition of the Gamma function
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Next we will make use of the following lemma:

Lemma 1. Let f be an integrable function defined over D, region of R%. Suppose we
wish to evaluate the integral
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If for each x and y pair in D, we let z and t be real values such that x = g(z,t) and
y = h(z,t) for integrable functions g and h then it can be shown that
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Where J is the determinant of the jacobian matrix
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and S is the transformation of the region D (in other words, S is the set of all points
such that if you put those points in the functions g and h you get the set of points that
comprise the region D).

So, to use our lemma we will let u = g(t, z) = 2t and we will let v = h(t, z) = 2(1 —1t).
This means that our Jacobian will be
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And thus
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Additionally, Since in our case D is the region bounded by 0 < u and 0 < v, S will be
the region bounded by 0 < z and 0 < ¢ < 1, which we conclude from the following logic:
0<z2zt = 0<zandO<t
0<z2(l—t) = 0<1-—t
= t<1



Therefore

/ / w b= le= Wt Qpdu = fff(g(zj),h(::,t))‘J‘dZdt
o Jo s
0o 1
= [ [t - )t e
o Jo
0ol
_ / /za+b—2+1ta_1(1_t)b_le_zdtdz
o Jo

1
= / za+b_1e_zdz/ 1 — ) de
0 0

1
= I‘(a—i—b)/ 71— ) de
0

So, this means that we have shown that
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Thus concluding our proof.



