
Continuous Random Variables

1 Definition

• Now that we have discussed Discrete Random Variables we will now move on to
continuous Random Variables

• Like Discrete Random Variables, continuous Random Variables are numerical rep-
resentations of the outcomes of a probability experiment

• Where Discrete Random Variables have a support with finite or countable infi-
nite number of elelements, the support of a continuous random variable has an
uncountably infinite number of elements

• Typically this means that the support of a continuous random variable is composed
of intervals of numbers

• Because there are an uncountably infinite number of possible values of a continuous
random variable, we see that the probability of the random variable being any one
particular value must be zero

• i.e. P (X = x) = 0∀x ∈ S, the support of the continuous random variable X

• This is true because if an uncountably infinite number of potential values of the
random variable had some non zero probability, then the total probability would
be greater than 1

• another way to think of this is imagine you are waiting for a bus that is scheduled
to arrive at noon

– At first it seems reasonable to say that there is some probability that the bus
will be on time

– But when we say ”on time” do we mean exactly noon?

– Usually if the bus stops at 1 second after noon we would still call this on time

– When we think about it, it is really unlikely that the bus will arrive exactly
at noon (not even a millisecond off!)

• This means that our original Probability Distribution function definition doesn’t
make sense for continuous random variables

• Instead we will look at the probability that the random variable is in a range of
values, specifically we will look at P (X ≤ x)

Definition 1. The Cumulative Probability Distribution Function ( or just cu-
mulative distribution function; CDF for short) of a (any, discrete or continuous)
random variable is the function FX that take possible values of the random variable
and returns the probability that the random variable is less tha nor equal to that
number. i.e. FX = P (X ≤ x)∀x.
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• Properties of the CDF of a random variable X

– FX (−∞) = limx→−∞ FX (x) = 0

– FX (∞) = limx→∞ FX (x) = 1

– FX is a non-decresing function (i.e. for x1 < x2, FX (x1) < FX (x2))

• Note, both discrete and continuous random variables have CDFs

• CDFs of Discrete random variables will have jumps in values

– For example consider X, a discrete Random Variable with P (X = 1) = .2
and P (X = 2) = .8

– Then the CDF of X will be

FX (x) =


0 if x < 1
.2 if 1 ≤ x < 2
1 if 2 ≤ x

• CDFs of continuous Random variables on the other hand will be smooth, contin-
uous functions (i.e. no jumps)

• This difference is another way you can think of differentiating discrete and Conti-
nous Random Variables

• We would still like a function like the Probability distribution function of the
discrete random variable to help us characterize the distribution of a con tinuous
random varibale

• So, for continous random variables we introduce the following definition of proba-
bility distribution functions:

Definition 2. The Proability Distribution function of a Continuous Random vari-
able X with CDF FX (sometimes also called a probability densifty function, PDF
for short) is defined to be the function fX such that

fX (x) =
d

dx
FX (x) = F ′

X
(x)

• Conversely we can say that if a Random Variable has a PDF fX (x), then the
following theorem gives us the CDF of the random Variable:

Theorem 1. Let X be a continuous Random Variable with PDF fX . The the
CDF of the distribution, FX (x) is

FX (x) =

∫ x

−∞
fX (y)dy

• Like with the properties of a valid discrete random variable’s PDF, there are two
properties of a valid continuous random Variable PDF
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• Let X be a continuous Random Variable with support S and PDF fX . Then,

1. fX (x) ≥ 0∀x ∈ S
2.
∫∞
−∞ fX (x)dx = 1

2 Future Questions and definitions

• When we get to the statistical part of the course (next semester), we will want to
be able to answer questions about Rando variables that are of certain forms.

• Here we will introduce the forms of these questions and define the related answers

1. Suppose We have a Random Variable X (discrete or continuous). Sometimes
we will want to find the value , such that P (X ≤ ,) = p, where p is a value
between 0 and 1.

– This question is asking for a quantile of the distribution of X. Formally,
we define a quantile as follows:
Definition 3. Let X be a Random variable with CDF FX (x) and let p
be a value between 0 and 1. The pth quantile of the distribution of X, φp
is the smallest value such that P (X ≤ φp) = FX (φp) ≥ p.

– Sometimes the pth quantile is also refered to as the (100× p)th percentile

– Note that, because continuous Random Variables have continuous CDFs,
the pth quantile (φp) of a continuous random variable will be the smallest
value such that P (X ≤) = FX (φp) = p

2. Again suppose that we have a Random Variable X. Sometimes we will want
to know the probability that the random variable will be between two real
values a and b, where a < b [P (a ≤ X ≤ b)].

– For Discrete Random variables, We simply take every value that X can
take on that is between a and b and take the sum of the probabilities of
those numbers

– For continuous Random Variables with PDF fX we simply use the fol-
lowing theorem:
Theorem 2. Let X be a Continuous Random Variable with pdf fX .
Then,

P (a ≤ X ≤ b) =

∫ b

a
fX (x)dx

Proof. Before we prove the theorem, we will need to prove a lemma first.

Lemma 1. Let X be a continuous Random variable and let a be a real
valued constant. Then

P (X ≤ a) = P (X < a)
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Proof.

P (X ≤ a) = P (X < a) + P (X = a)← Mutually Exclusive Events

= P (X < a)← P (X = a) = 0 for any constant a

P (a ≤ X ≤ b) = P ((a ≤ X) ∩ (X ≤ b))
= P (a ≤ X) + P (X ≤ b)− P ((a ≤ X) ∪ (X ≤ b))
↑ General additive rule

= 1− P (X < a) + P (X ≤ b)− P ((a ≤ X) ∪ (X ≤ b))
↑ Compliment rule

= 1− P (X ≤ a) + P (X ≤ b)− P ((a ≤ X) ∪ (X ≤ b))
↑ From Lemma

= 1− P (X ≤ a) + P (X ≤ b)− P (−∞ < X <∞)

↑ X ≤ b ∪ a ≤ X is equivalent to X being any number since a < b

= 1− P (X ≤ a) + P (X ≤ b)− 1

= P (X ≤ b)− P (X ≤ a)

=

∫ b

−∞
fX (x)dx−

∫ a

−∞
fX (x)dx

=

∫ b

a
fX (x)dx

3 Expectation of a Continuous Random Variable

• Fos continuous Random Variables we also have expectation, but we define it dif-
ferently

Definition 4. Let X be a continuous Random Variable with PDF fX (x) and let
g be a real valued function thati defined over the set of real numbers. Then the
expectation of g(X) is

E[g(X)] =

∫ ∞
∞

g(x)fX (x)dx

• Like with discrete Random variables, when g is just the identity function (i.e.
g(y) = y), then E[g(X)] = E[X] is the Expected Value of the distribution of X
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• And like with discrete Random Variables, when g is the function g(,) = (, −
E[X])2, then E[g(X)] = E[(X − E[X])2] is the variance of the distribution of X

4 Expectation Theorems for Continuous Random Variables

• Let X be a continuous RV with PDF fX

• Let c be a real valued constant. Then,

E[c] = c

Proof.

E[c] =

∫ ∞
−∞

cfX (x)dx

= c

∫ ∞
−∞

fX (x)dx← Pulling out a factor of c

= c← By Second rule of Continuous PDFs

• Let c be a real valued constant and let g be a real valued function that is defined
over the support of X. Then,

E[cg(X)] = cE[g(X)]

Proof.

E[cg(X)] =

∫ ∞
−∞

cg(X)fX (x)dx

= c

∫ ∞
−∞

g(X)fX (x)dx← Pulling out a factor of c

= cE[g(X)]← Definition of E[g(X)]

• Let g1, g2, g3, ..., gn be n real valued functions that are all defined over the support
of X. Then,

E[

n∑
i=1

gi(X)] =

n∑
i=1

E[gi(X)]
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Proof.

E[
∑

i = 1ngi(X)] =

∫ ∞
−∞

n∑
i=1

gi(X)fX (x)dx

=
n∑

i=1

∫ ∞
−∞

gi(X)fX (x)dx← Integral of the sums is the sum ofth integrals

=
n∑

i=1

E[gi(X)]← Defintion of E[gi(X)]

• Variance Equality

V [X] = E[(X − E[X])2] = E[X2]− (E[X])2

Note1: (E[X])2 is often denoted as E2[X] Note2: This proof is identical to the
proof for the varaince of discrete random variables

Proof.

V [X] = E[(X − E[X])2]

= E[X2 − 2E[X] + E2[X]]

= E[X2]E[−2XE[X]] + E[E2[X]]← By the Third Expectation Rule

= E[X2]− 2E[X]E[X] + E2[X]← By the First and second Expectation Rules since

−2E[X] and E2[X] are both constant values

= E[X2]− 2E2[X] + E2[X]

= E[X2]− E2[X]

5 Exercises

Let X be a continuous Random Variable with PDF fX (x) and let a and b be real,
constant values. Prove that

1. E[aX + b] = aE[X] + b

2. V [aX + b] = a2V [X]
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6 Solutions

1. E[aX + b] = aE[X] + b
Solution:

E[aX + b] =

∫ ∞
−∞

(ax+ b)fX (x)dx

=

∫ ∞
−∞

axfX (x)dx+

∫ ∞
∞

bfX (x)dx

= a

∫ ∞
−∞

xfX (x)dx+ b

∫ ∞
∞

fX (x)dx

= aE[X] + b

2. V [aX + b] = a2V [X]

V [aX + b] = E[(aX + b)2]− E2[aX + b]

and

E[(aX + b)2] =

∫ ∞
−∞

(ax+ b)2fX (x)dx

=

∫ ∞
−∞

(a2x2 + 2abx+ b2)fX (x)dx

=

∫ ∞
−∞

a2x2fX (x)dx+

∫ ∞
∞

2abxfX (x)dx+

∫ ∞
−∞

b2fX (x)dx

= a2
∫ ∞
−∞

x2fX (x)dx+ 2ab

∫ ∞
∞

xfX (x)dx+ b2
∫ ∞
−∞

fX (x)dx

= a2E[X2] + 2abE[X] + b2

So,

V [aX + b] = E[(aX + b)2]− E2[aX + b]

= a2E[X2] + 2abE[X] + b2 − (a2E[X] + 2abE[X] + b2)

= a2(E[X2]− E2[X])

= a2V [X]

7 Moment Generating Function of a Continuous Random
Variable

• Like With discrete random variables, the definiton of a moment for the distirbution
of a continuous random variable depends on the expectation of the distribution of
the Random variable:
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Definition 5. Let k be a non-negative integer, and let X be a continuous random
variable with PDF fX (x). Then the kth moment of X is E[Xk] =

∫∞
∞ xkfX (x)dx

• Not surprisingly, the definition of of the moement Generating function for the
distirbution of a continuous random variable is also similar to that of the discrete
random variable distribution:

Definition 6. The Moment Generating Function (or just MGF for short) of
a Continuous Random Variable X with PDF fX is defined to be

MX (t) = E[etX ] =

∫ ∞
−∞

etxfX (x)dx

where there exists a b > 0 such that MX (t) <∞ for |t| < b

• and this Momentgenerating function has the exact same properties that the Mo-
ment Generating Function of Discerte Random variables do, namely

Theorem 3. Let X be a continous Random Variable with PDF fX (x) and MGF
MX (t). Then

E[Xk] =

[
dk

dtk
MX (t)

]
t=0
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