Moment Generating functions (MGFs)

Definitions

e Before we can discuss what a moment generating function is, we must first define
what we mean by a moment

Definition 1. Let k be a non-negative integer, and let X be a random variable
with support S and PDF p, (x). Then the k" moment of X is E[X¥]

e We have already worked with the first moment, E[X]

Definition 2. The Moment Generating Function (or just MGF for short) of
a Random Variable X with support S and PDF p, is defined to be

M, (1) = Ele'¥]
where there exists a b > 0 such that M, (t) < oo for [t| < b

e So, why is this called the moment generating functuion?

e Lets consider the taylor exapnsion of eX!
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e So taking the expectation on both sides of this equation we see
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e So, the moment generating function is really a sum of terms involving all of the
moments of X

e This means that if we differentiate the MGF with respect to ¢t and then set ¢ to
zero, we will be left with just a moment of X



e For example:
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o If we were to take further derivatives, we would be able to get higher order moments
e We can sumarize this characteristic as follows

Theorem 1. Let X be a Random Variable with support S, PDF p, (z) and MGF
M, (t). Then
k d*
E[X"] = M. (t
X [dtk | )Lzo

e While we will not prove it in this class, it turns out that the MGF of a Random
variable is unique

e That is to say that if a Random variable has a particular PDF, then that implies
a particular MGF and vice a versa.

Theorem 2. Let X be a Random Variable with support S. Then, assuming that
both the PDF and MGF exist for the distribution of X, X has one unique PDF p,
and one unique MGF M (t)



e This means that we can identify the distribution of a random variable based on
the formula for the MGF in the same way we can identify the distribution of the
Random Variable based on its PDF

2 Examples

e Now we will derive some moment generating functions

1. Let X ~ Bern(p). Derive M (t), the MGF of X

Solution:

M (t) = B[]
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= (1-p)el" + pe!
= (1—p)+pe

2. Let X ~ Nbinomial(r,p). Derive M, (t), the MGF of X

Solution:
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Note, in the definition of the MGF, M, (t) only needs to exist for |t| < b for some
positive b. If we restrict ¢ to be |t| < —In(1 — p), then we see that ¢t < —In(1 — p),
which implies that e! < e~ (1=P) — ﬁ. Thus 0 < (1 —p)e! < 1 and 0 <

[1 — (1 —p)e’] < 1. This means that > o7 (fj)[l — (1 =p)e]"[(1 = p)el]*~" =1,
giving us our MGF of

M, (t) = (%) when |t < —In(1 — p)

3. Let X ~ poisson(X). Derive M, (t), the MGF of X (Derivation left as HW)

My (t) = exp(A(e! — 1))

T

Note: exp(z) = e®. i.e. exp() is just another way of writing e()

3 Exercise

1. Let X ~ bin(n,p) . Derive M (t), the MGF of X

4 Solution

1. Let X ~ bin(n,p) . Show that M, (t), the MGF of X, is (pe’ +1 — p)"
Solution:

Mx(t) = E[eXt]

= Z extpx ()
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= (pe' +1 —p)" < From binomial Expansion theorem



