Covariance, Expectation of Linear Combinations, & Conditional Expectation

1 Covariance

1.1 Motivation

e While the joint PDF of two random variables fully describes the relationship be-
tween two random variables, we would like to have a measurements to summarizes
how closely related two random variables are

o We have already touched on this with the concept of Independence

e When two random varibles are independent, that means that there is no relation-
ship between two random variables

e Covariance is how we will numerically summarize how closely related two random
variables are

1.2 Definitions

e First we define the covariance of two random variables

Definition 1. Let X; and Xo be random variables with finite first moments (i.e.
E[X1] and E[X3] are real valued). Then the Covariance between X1 and Xy is

Cov(X1, X2) = E[(X1 — E[X1])(X2 — E[X2])]

e And we will also define a related concept, the correlation of two random variables

Definition 2. Let X1 and Xso be random variables with finite second moments
(i.e. E[X?] and E[X3] are real valued). Then the Correlation between X, and
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CO’U(Xl,XQ)

Corr(Xy, X2) = IV

1.3 Theorems
e We have a few theorems to help make finding the Covariance easier
e Our first theorem is akin to our Variance Formula

Theorem 1. Let X1 and Xy be random variables with finite first moments (i.e.
E[X1] and E[X3] are real valued). Then

CO’U(Xl,XQ) == E[XlXQ] - E[Xl]E[XQ}



Proof.
Cov(X1,X2) = E[(X1 - E[X1])(X2 — E[Xa])]
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= E[X1Xo] — E[E[X1)X,] — E[E[X2)X1] + E[E[X1]E[X,]]
= E[X1Xo] — E[X1]E[X,] — E[X3]E[X1] + E[X1)E[X>)
= E[X\Xo] — E[X1]E[X,]

e Our Second theorem Relates to the relationship bewteen independence and covari-
ance

Theorem 2. Let X1 and Xy be random variables with finite first moments (i.e.
E[X1] and E[X3] are real valued). If X1 and Xy are independent, then

COU(Xl, XQ) =0

Proof.
Cov(X1,X2) = E[X1X39] — E[X1)E[X3] < By previous theorem
= FE[Xi|E[X32] — E[X;]E[X2] < Because X; and X5 are independent
= 0
O

2 Expectation of Linear Combinations

2.1 Motivation

e Next we will cover the Exectation, Variance and Covariance of Random variables
that are actually the linear combination of other random variables

e This is useful because we often combine measurements into a summary measure-
ment (for example, the sample mean)

2.2 Theorems

e All of these theorems will be based on
U, = ZaiXi and Uy = Zanj
i=1 j=1

where X1, ..., X, and Y7, ..., Y,, are random variables and a1, ..., an, b1, ..., b, are all
real valued constants



e Expectation

Theorem 3.

E[U,] = Z a; E[X;]

Proof.
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e Variance
Theorem 4.
n n—1 n
i=1 i=1 j=i+1
Or, Equivalently
VIUe] = ZQ?V[Xi] +2 Z Z aia;Cov[X;, X
i=1 1<i<j<n

Or, Equivalently

VU, = Zn: a?V[Xi] + Zn: Zn: aia;Cov[X;, X]
i=1

T
Proof.
VU] = E[U, - E[U)%
= E[(i a; X; — E[an a; X;])’]
- E[(zn; a; X; — Zn; a; B[Xi])?]
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= B[} ailX - BIX])’]

— E[Z Zaiaj[Xi - EIXi]][X; — B[X;]]]

=1 j=1

— ZZaza] BIX][X; — E[X;]]]
=1 j=1

_ ZaQE (X — E[Xi])%] + Zzazag EIX]|[X; — E[X;]]]
i=1 =1 1
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— Zafv[Xi] + Z ZaiajCOU[XLXi]
= e

= D aVIXi]+2) ) aia;Cov[X;, X;]
i=1 1<i<j<n
n n—1 n

= > aVIXi]+2) Y aia;CovX;, X))
i=1 i=1 j=i+l

e Covariance

Theorem 5.

Cov[Us, Uy] Z Zazb Cov[z;,Y,

=1 j=1
Proof.

CovlU,,Uy] = E[U, — E[U,])(U, — EU,))]
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= Y b EICX - BXY; - BIY;))

= Z Z a;bjCov]X;, Y]]

i=1 j=1

3 Conditional Expectation

3.1 Motivation

e Here we formally introduce the concept of conditional Expectation, and some re-
lated theorems

e The concept is really just recognizing that the conditional distribution is itself a
distribution

3.2 Definitions

e The definition of the Conditional expectation for discrete random variables is as
follows:

Definition 3. Let X; and X9 be discrete random variables where the conditional
distribution of X1|Xo = xo is p1|2(x1) = p(z1]x2), and let g be a real valued function
defined for all possible values of X1|Xo = xo. Then the conditional expectation of
g(X1)|X2 = X9 18

Elg(X1)|X2 = xa] = Eyplg(X1)|Xo = wa] = Y g(x1)p1ja(e1)
z1€51

e And the definition of the Conditional expectation for continuous random variables
is as follows:

Definition 4. Let X1 and X3 be continuous random variables where the condi-
tional distribution of X1|Xa = 2 is fi2(21) = f(w1|z2), and let g be a real valued
function defined for all possible values of X1|Xo = x9. Then the conditional expec-
tation of g(X1)|Xa = 2 is

o0

Blg(X1)| X2 = x2] = Ey2[g(X1)| X2 = 2] = / g(z1) frjz(w1)day

—00



3.3 Theorems

e Here we introduce some theorems related to conditional expectations

Theorem 6. Let X1 and Xo be random variales and let g be a real valued function
defined for all possible values of X1, then

Elg(X1)] = E[E[g(X1)| X2 = x2]]

Proof.

Here we present the proof when X and X5 are continuous. The proof is similar
when X; and X are discrete. Let f be the joint pdf of X; an Xo, fi» be the
conditional pdf of X;|Xs = x5, and fy be the marginal pdf of X5. Then we have

Bl = [ [ gtansteneinde;
r

g(x1) frj2(21]| X2 = x2) fo(w2)dw1dwy

= /OO / 9(x1) frj2(21]| Xe = z2)d21| fa(w2)dT2
/OO E X1 ‘XQ = :L'Q]fg(mg)dxg
El

Blg(X0)| Xz = 2]

O]

Theorem 7. Let X1 and Xo be random variales and let g be a real valued function
defined for all possible values of X1, then

Vig(X1)] = E[V[g(X1)| X2 = z2]] + V[E[g(X1)| X2 = 23]

where
V[g(X1)|Xa =x5] = E[(g(X1) — Elg(X1)|Xs = 22])*| X5 = 23]
= E[g(X1)* X2 = 2] — (E[g(X1)| X3 = 9])?
Proof.
Vig(X1)] = Elg(X1)%] — E*[g(X1)]



(E [Elg(X1)*| X2 = 22]] — E [(E[g(X1)| X2 = 22])?])
+ (B [(Elg(X1)[X2 = 22))*] — (B [E[g(X1)|X2 = 22])))
(E[Elg ( 1?1 X = wo] — (E[g(X1)| X2 = 22])?])
+ (E [(Elg(X1)| X = z2])?] — (B [E[g(X1)| X2 = 22]])?)
(E[V]g ( 1) X2 = 22]])
(B

+ (E [(Elg(X1)|Xs = z2])?] — (E[E[g(X1)| X2 = 22]]))
(B [V[g(X1)| X2 = x2]]) + (V [E[g(X1)[ X2 = 22]])



