
Covariance, Expectation of Linear Combinations, & Conditional Expectation

1 Covariance

1.1 Motivation

• While the joint PDF of two random variables fully describes the relationship be-
tween two random variables, we would like to have a measurements to summarizes
how closely related two random variables are

• We have already touched on this with the concept of Independence

• When two random varibles are independent, that means that there is no relation-
ship between two random variables

• Covariance is how we will numerically summarize how closely related two random
variables are

1.2 Definitions

• First we define the covariance of two random variables

Definition 1. Let X1 and X2 be random variables with finite first moments (i.e.
E[X1] and E[X2] are real valued). Then the Covariance between X1 and X2 is

Cov(X1, X2) = E[(X1 − E[X1])(X2 − E[X2])]

• And we will also define a related concept, the correlation of two random variables

Definition 2. Let X1 and X2 be random variables with finite second moments
(i.e. E[X2

1 ] and E[X2
2 ] are real valued). Then the Correlation between X1 and

X2 is

Corr(X1, X2) =
Cov(X1, X2)√
V [X1]V [X2]

1.3 Theorems

• We have a few theorems to help make finding the Covariance easier

• Our first theorem is akin to our Variance Formula

Theorem 1. Let X1 and X2 be random variables with finite first moments (i.e.
E[X1] and E[X2] are real valued). Then

Cov(X1, X2) = E[X1X2]− E[X1]E[X2]
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Proof.

Cov(X1, X2) = E[(X1 − E[X1])(X2 − E[X2])]

= E[X1X2 − E[X1]X2 − E[X2]X1 + E[X1]E[X2]]

= E[X1X2]− E[E[X1]X2]− E[E[X2]X1] + E[E[X1]E[X2]]

= E[X1X2]− E[X1]E[X2]− E[X2]E[X1] + E[X1]E[X2]

= E[X1X2]− E[X1]E[X2]

• Our Second theorem Relates to the relationship bewteen independence and covari-
ance

Theorem 2. Let X1 and X2 be random variables with finite first moments (i.e.
E[X1] and E[X2] are real valued). If X1 and X2 are independent, then

Cov(X1, X2) = 0

Proof.

Cov(X1, X2) = E[X1X2]− E[X1]E[X2]← By previous theorem

= E[X1]E[X2]− E[X1]E[X2]← Because X1 and X2 are independent

= 0

2 Expectation of Linear Combinations

2.1 Motivation

• Next we will cover the Exectation, Variance and Covariance of Random variables
that are actually the linear combination of other random variables

• This is useful because we often combine measurements into a summary measure-
ment (for example, the sample mean)

2.2 Theorems

• All of these theorems will be based on

Ux =
n∑

i=1

aiXi and Uy =
m∑
j=1

ajYj

where X1, ..., Xn and Y1, ..., Ym are random variables and a1, ..., an, b1, ..., bm are all
real valued constants
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• Expectation

Theorem 3.

E[Ux] =

n∑
i=1

aiE[Xi]

Proof.

E[Ux] = E[
n∑

i=1

aiXi]

=
n∑

i=1

E[aiXi]

=
n∑

i=1

aiE[Xi]

• Variance

Theorem 4.

V [Ux] =
n∑

i=1

a2iV [Xi] + 2
n−1∑
i=1

n∑
j=i+1

aiajCov[Xi, Xj ]

Or, Equivalently

V [Ux] =
n∑

i=1

a2iV [Xi] + 2
∑∑
1≤i<j≤n

aiajCov[Xi, Xj ]

Or, Equivalently

V [Ux] =

n∑
i=1

a2iV [Xi] +

n∑
i=1

n∑
j=1

i 6=j

aiajCov[Xi, Xj ]

Proof.

V [Ux] = E[(Ux − E[Ux])2]

= E[(

n∑
i=1

aiXi − E[

n∑
i=1

aiXi])
2]

= E[(

n∑
i=1

aiXi −
n∑

i=1

aiE[Xi])
2]
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= E[(
n∑

i=1

ai[Xi − E[Xi]])
2]

= E[
n∑

i=1

n∑
j=1

aiaj [Xi − E[Xi]][Xj − E[Xj ]]]

=

n∑
i=1

n∑
j=1

aiajE[[Xi − E[Xi]][Xj − E[Xj ]]]

=

n∑
i=1

a2iE[[Xi − E[Xi]]
2] +

n∑
i=1

n∑
j=1

i 6=j

aiajE[[Xi − E[Xi]][Xj − E[Xj ]]]

=
n∑

i=1

a2iV [Xi] +
n∑

i=1

n∑
j=1

i 6=j

aiajCov[X1, Xi]

=
n∑

i=1

a2iV [Xi] + 2
∑∑
1≤i<j≤n

aiajCov[Xi, Xj ]

=
n∑

i=1

a2iV [Xi] + 2
n−1∑
i=1

n∑
j=i+1

aiajCov[Xi, Xj ]

• Covariance

Theorem 5.

Cov[Ux, Uy] =
n∑

i=1

m∑
j=1

aibjCov[xi, Yj ]

Proof.

Cov[Ux, Uy] = E[(Ux − E[Ux])(Uy − E[Uy])]

= E[(
n∑

i=1

aiXi − E[
n∑

i=1

aiXi])(
m∑
j=1

bjYj − E[
m∑
j=1

bjYj ])]

= E[(

n∑
i=1

ai(Xi − E[Xi]))(

m∑
j=1

bj(Yj − E[Yj ]))]

= E[(

n∑
i=1

m∑
j=1

aibj(Xi − E[Xi])(Yj − E[Yj ])]

=

n∑
i=1

m∑
j=1

E[aibj(Xi − E[Xi])(Yj − E[Yj ])]
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=
n∑

i=1

m∑
j=1

aibjE[(Xi − E[Xi])(Yj − E[Yj ])]

=

n∑
i=1

m∑
j=1

aibjCov[Xi, Yi]

3 Conditional Expectation

3.1 Motivation

• Here we formally introduce the concept of conditional Expectation, and some re-
lated theorems

• The concept is really just recognizing that the conditional distribution is itself a
distribution

3.2 Definitions

• The definition of the Conditional expectation for discrete random variables is as
follows:

Definition 3. Let X1 and X2 be discrete random variables where the conditional
distribution of X1|X2 = x2 is p1|2(x1) = p(x1|x2), and let g be a real valued function
defined for all possible values of X1|X2 = x2. Then the conditional expectation of
g(X1)|X2 = x2 is

E[g(X1)|X2 = x2] = E1|2[g(X1)|X2 = x2] =
∑

x1∈S1

g(x1)p1|2(x1)

• And the definition of the Conditional expectation for continuous random variables
is as follows:

Definition 4. Let X1 and X2 be continuous random variables where the condi-
tional distribution of X1|X2 = x2 is f1|2(x1) = f(x1|x2), and let g be a real valued
function defined for all possible values of X1|X2 = x2. Then the conditional expec-
tation of g(X1)|X2 = x2 is

E[g(X1)|X2 = x2] = E1|2[g(X1)|X2 = x2] =

∫ ∞
−∞

g(x1)f1|2(x1)dx1
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3.3 Theorems

• Here we introduce some theorems related to conditional expectations

Theorem 6. Let X1 and X2 be random variales and let g be a real valued function
defined for all possible values of X1, then

E[g(X1)] = E[E[g(X1)|X2 = x2]]

Proof.
Here we present the proof when X1 and X2 are continuous. The proof is similar
when X1 and X2 are discrete. Let f be the joint pdf of X1 an X2, f1|2 be the
conditional pdf of X1|X2 = x2, and f2 be the marginal pdf of X2. Then we have

E[g(X1)] =

∫ ∞
−∞

∫ ∞
−∞

g(x1)f(x1, x2)dx1dx2

=

∫ ∞
−∞

∫ ∞
−∞

g(x1)f1|2(x1|X2 = x2)f2(x2)dx1dx2

=

∫ ∞
−∞

[∫ ∞
−∞

g(x1)f1|2(x1|X2 = x2)dx1

]
f2(x2)dx2

=

∫ ∞
−∞

E[g(X1)|X2 = x2]f2(x2)dx2

= E[E[g(X1)|X2 = x2]]

Theorem 7. Let X1 and X2 be random variales and let g be a real valued function
defined for all possible values of X1, then

V [g(X1)] = E[V [g(X1)|X2 = x2]] + V [E[g(X1)|X2 = x2]]

where

V [g(X1)|X2 = x2] = E[(g(X1)− E[g(X1)|X2 = x2])
2|X2 = x2]

= E[g(X1)
2|X2 = x2]− (E[g(X1)|X2 = x2])

2

Proof.

V [g(X1)] = E[g(X1)
2]− E2[g(X1)]

= E
[
E[g(X1)

2|X2 = x2]
]
− (E [E[g(X1)|X2 = x2]])

2

= E
[
E[g(X1)

2|X2 = x2]
]

+
(
−E

[
(E[g(X1)|X2 = x2])

2
]

+ E
[
(E[g(X1)|X2 = x2])

2
])

−(E [E[g(X1)|X2 = x2]])
2
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=
(
E
[
E[g(X1)

2|X2 = x2]
]
− E

[
(E[g(X1)|X2 = x2])

2
])

+
(
E
[
(E[g(X1)|X2 = x2])

2
]
− (E [E[g(X1)|X2 = x2]])

2
)

=
(
E
[
E[g(X1)

2|X2 = x2]− (E[g(X1)|X2 = x2])
2
])

+
(
E
[
(E[g(X1)|X2 = x2])

2
]
− (E [E[g(X1)|X2 = x2]])

2
)

= (E [V [g(X1)|X2 = x2]])

+
(
E
[
(E[g(X1)|X2 = x2])

2
]
− (E [E[g(X1)|X2 = x2]])

2
)

= (E [V [g(X1)|X2 = x2]]) + (V [E[g(X1)|X2 = x2]])
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