
Moment Generating functions (MGFs)

1 Definitions

• Before we can discuss what a moment generating function is, we must first define
what we mean by a moment

Definition 1. Let k be a non-negative integer, and let X be a random variable
with support S and PDF pX (x). Then the kth moment of X is E[Xk]

• We have already worked with the first moment, E[X]

Definition 2. The Moment Generating Function (or just MGF for short) of
a Random Variable X with support S and PDF pX is defined to be

MX (t) = E[etX ]

where there exists a b > 0 such that MX (t) <∞ for |t| < b

• So, why is this called the moment generating functuion?

• Lets consider the taylor exapnsion of eXt

eXt =

∞∑
i=0

(Xt)i

i!

• So taking the expectation on both sides of this equation we see

E[eXt] = E[
∞∑
i=0

(Xt)i

i!
]

=
∞∑
i=0

E[
(Xt)i

i!
]

=
∞∑
i=0

ti

i!
E[Xi]

• So, the moment generating function is really a sum of terms involving all of the
moments of X

• This means that if we differentiate the MGF with respect to t and then set t to
zero, we will be left with just a moment of X
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• For example:

d

dt
E[eXt] =

d

dt
E[
∞∑
i=0

(Xt)i

i!
]

=
d

dt

( ∞∑
i=0

ti

i!
E[Xi]

)

=
d

dt

(
1 +

∞∑
i=1

ti

i!
E[Xi]

)
← Pulled out the first term of the sum

=

(
0 +

∞∑
i=1

iti−1

i!
E[Xi]

)

=

(
0 +

1t1−1

i!
E[X1] +

∞∑
i=2

iti−1

i!
E[Xi]

)
← Pulled out the first term of the sum

=

(
0 + E[X] +

∞∑
i=2

iti−1

i!
E[Xi]

)

=

(
0 + E[X] +

∞∑
i=2

i(0)i−1

i!
E[Xi]

)
← Set t = 0

=

(
0 + E[X] +

∞∑
i=2

0

)
← Set t = 0

= E[X]

• If we were to take further derivatives, we would be able to get higher order moments

• We can sumarize this characteristic as follows

Theorem 1. Let X be a Random Variable with support S, PDF pX (x) and MGF
MX (t). Then

E[Xk] =

[
dk

dtk
MX (t)

]
t=0

• While we will not prove it in this class, it turns out that the MGF of a Random
variable is unique

• That is to say that if a Random variable has a particular PDF, then that implies
a particular MGF and vice a versa.

Theorem 2. Let X be a Random Variable with support S. Then, assuming that
both the PDF and MGF exist for the distribution of X, X has one unique PDF pX
and one unique MGF MX (t)
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• This means that we can identify the distribution of a random variable based on
the formula for the MGF in the same way we can identify the distribution of the
Random Variable based on its PDF

2 Examples

• Now we will derive some moment generating functions

1. Let X ∼ Bern(p). Derive MX (t), the MGF of X
Solution:

MX (t) = E[eXt]

=
∑
x∈S

extpX (x)

=
1∑

x=0

extpx(1− p)1−x

= (1− p)e(0)t + pet

= (1− p) + pet

2. Let X ∼ Nbinomial(r, p). Derive MX (t), the MGF of X
Solution:

MX (t) = E[eXt]

=
∑
x∈S

extpX (x)

=
∞∑
x=r

(
x− 1

r − 1

)
extpr(1− p)x−r

=

∞∑
x=r

(
x− 1

r − 1

)
e(r+x−r)tpr(1− p)x−r

=
∞∑
x=r

(
x− 1

r − 1

)
erte(x−r)tpr(1− p)x−r

=

∞∑
x=r

(
x− 1

r − 1

)
(pet)r[(1− p)et]x−r

= (pet)r
[1− (1− p)et]r

[1− (1− p)et]r
∞∑
x=r

(
x− 1

r − 1

)
[(1− p)et]x−r
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=
(pet)r

[1− (1− p)et]r
∞∑
x=r

(
x− 1

r − 1

)
[1− (1− p)et]r[(1− p)et]x−r

Note, in the definition of the MGF, MX (t) only needs to exist for |t| < b for some
positive b. If we restrict t to be |t| < − ln(1− p), then we see that t < − ln(1− p),
which implies that et < e− ln(1−p) = 1

1−p . Thus 0 < (1 − p)et < 1 and 0 <

[1− (1− p)et] < 1. This means that
∑∞

x=r

(
x−1
r−1
)
[1− (1− p)et]r[(1− p)et]x−r = 1,

giving us our MGF of

MX (t) =

(
(pet)

1− (1− p)et

)r

when |t| < − ln(1− p)

3. Let X ∼ poisson(λ). Derive MX (t), the MGF of X (Derivation left as HW)

MX (t) = exp(λ(et − 1))

Note: exp(x) = ex. i.e. exp() is just another way of writing e()

3 Exercise

1. Let X ∼ bin(n, p) . Derive MX (t), the MGF of X

4 Solution

1. Let X ∼ bin(n, p) . Show that MX (t), the MGF of X, is (pet + 1− p)n
Solution:

MX (t) = E[eXt]

=
∑
x∈S

extpX (x)

=

n∑
x=0

(
n

x

)
extpx(1− p)n−x

=
n∑

x=0

(
n

x

)
(pet)x(1− p)n−x

= (pet + 1− p)n ← From binomial Expansion theorem
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