
Indepence & Expectation

1 Indepence

1.1 Motivation

• Much like how we discussed the concept of two events being independent of each
other, we can also discuss the idea of random variables being independent

• When we say that two random variables are independent, we are conveying that
the value of one of the random variables does not in any way affect the value of
the other

• This is important for regression and prediction.

• If we can show that two measure are independent, then that means that one
measurement will be useless a predictor of the value of the other measurement

1.2 Definition

• Let X1, X2 be Random variables with joint CDF F , and with marginal CDFs F1

and F2, respectively.

Definition 1. X1, and X2 are said to be independent if

F (x1, x2) = F1(x1)F2(x2)∀x1, x2

Definition 2. If two random variables are not independent, then they are said to
be dependent

• The concept of independence can be extended to more than two random variables in
a similar manner under two different definitions : pairwise independent & mutualy
indpendent

1.3 Theorems

• There are a few theorems that make showing the independence of random variables
somewhat easier

• The first theorem has to do with when X1 and X2 are discrete

Theorem 1. Let X1 and X2 be discrete random variables with joint PDF p and
marginal PDFs p1 and p2, respectively. Then X1 and X2 are independent iff

p(x1, x2) = p1(x1)p2(x2)∀x1, x2

• The second theorem has to do with when X1 and X2 are continuous
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Theorem 2. Let X1 and X2 be continuous random variables with joint PDF f
and marginal PDFs f1 and f2, respectively. Then X1 and X2 are independent iff

f(x1, x2) = f1(x1)f2(x2)∀x1, x2

• The third theorem gives us an extra tool when X1 and X2 are continuous

• The Theorem specifically applies when the support of X1 and X2 do not depend
on each other, or in other words, when the joint PDF is positive over a (constant)
square region of space

Theorem 3. Let X1 and X2 be continuous random variables with joint PDF f . If
for constant values a, b, c, d (a < b, c < d) the pdf f is positive only when a ≤ x1 ≤ b
and c ≤ x2 ≤ d, and zero other wise, then X1 and X2 are independent iff

f(x1, x2) = g(x1)h(x2)

For some functions g and h

• Basically, if the PDF is positive over a square rgion of space, then if the pdf can
be written as the product of a function of x1 and a (different) function of x2, then
X1 and X2 are independent

1.4 Examples

1. Let X1 and X2 be discrete random variables with the following joint pdf:

p(x1, x2) =

{
px2 (1−p)1−x2

x2+1 forx1 = 0, x2 and x2 = 0, 1

0 else

Where 0 < p < 1. Let’s find out if X1 and X2 are independent or dependent. We
already know the marginal distribution of X2 is

p2(x2) =

{
px2(1− p)1−x2 x2 = 0, 1
0 else

This implies that p2(0) = 1− p We can also see that

p1(0) =
∑

x2∈S2

p(0, x2)

=
1∑

x2=0

p(0, x2)

=
1∑

x2=0

p(0, x2)

=

1∑
x2=0

px2(1− p)1−x2

x2 + 1

= (1− p) + p/2

2



So, now we consider whether p(0, 0) = p1(0)p2(0)

p(0, 0) ? p1(0)p2(0)

(1− p) ? [(1− p) + p/2][1− p]

(1− p) 6= (1− p)2 +
p(1− p)
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For any p between 0 and 1 (in fact the two side are equal only when p = 1, which
isoutside the range of possible values). Thus X1 and X2 are dependent

2. Let X1 and X2 be continuous random variables with the following pdf:

f(x1, x2) =

{
exp(−x1) for0 < x1 and 0 < x2 < 1
0 else

Let’s find out if X1 and X2 are independent or dependent.

a) Solution 1:
We already know the marginal distribution of X1 is

f1(x1) =

{
e−x1 0 < x1
0 else

We can also find the marginal distribution of X2 to be

f2(x2) =

∫ ∞
−∞

f(x1, x2)dx1

=

{ ∫∞
0 exp(−x1)dx1 0 < x2 < 1

0 else

=

{
−exp(−x1)|∞x1=0 0 < x2 < 1
0 else

=

{
limx1→∞−exp(−x1)− (−exp(−0)) 0 < x2 < 1
0 else

=

{
0− (−1) 0 < x2 < 1
0 else

=

{
1 0 < x2 < 1
0 else

We see that infact f(x1, x2) = f1(x1)f2(x2) for all x1, x2, and thus X1 and
X2 are independent

b) Solution 2:
We see that the joint PDF is positive only when 0 < x1 < ∞ and when
0 < x2 < 1, so we can appeal to our third theorem. If we let

g(x1) =

{
exp(−x1) 0 < x1
0 else
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and we let

h(x2) =

{
1 0 < x2 < 1
0 else

Then we see that f(x1, x2) = g(x1)h(x2). Thus X1 and X2 are independent

2 Expectation of functions of multiple random variables

• Now, we will go over Expectation of functions of multiple random variables

2.1 Definitions

• As before, we will give seperate definitions based on groups of discrete random
variables and groups of continuous random variables

• We will begin with discrete random variables

Definition 3. Let X1, ..., Xn be discrete random variables with joint pdf p and let
g be a real valued function defined over all possible values of (X1, ..., Xn). Then
the expected value of g(X1, ..., Xn) is defined to be

E[g(X1, ..., Xn)] =
∑

x1∈S1

...
∑

xn∈Sn

g(x1, ..., xn)p(x1, ..., xn)

• An now when the random variables are continuous

Definition 4. Let X1, ..., Xn be continuous random variables with joint pdf f and
let g be a real valued function defined over all possible values of (X1, ..., Xn). Then
the expected value of g(X1, ..., Xn) is defined to be

E[g(X1, ..., Xn)] =

∫ ∞
−∞

...

∫ ∞
−∞

g(x1, ..., xn)f(x1, ..., xn)dx1...dxn

2.2 Theorems

• As one might expect, our expectation theorems can be extended into multivariate
expectation

Theorem 4. Let X1, ..., Xn be random variables and let c be a real valued constant.
Then

E[c] = c

Theorem 5. Let X1, ..., Xn be random variables, let c be a real valued constant
and let g be a real valued function defined over all possible values of (X1, ..., Xn).
Then

E[cg(X1, ..., Xn)] = cE[g(X1, ..., Xn)]
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Theorem 6. Let X1, ..., Xn be random variables and let g1...gk be real valued
functions defined over all possible values of (X1, ..., Xn). Then

E[
k∑

i=1

gi(X1, ..., Xn)] =
k∑

i=1

E[gi(X1, ..., Xn)]

• We also have a Theorem for when the random variables are independent

Theorem 7. Let X1, X2 be random variables and let g and h be real values func-
tionsdefined over the supports of X1, and X2, respectively. If X1 and X2 are
independent, then

E[g(X1)h(X2)] = E[g(X1)]E[h(X2)]

Here we will do the proof when X1 and X2 are continuous with pdf f and marginal
PDFs f1 and f2. The proof when the random variablesare discrete is similar

Proof.

E[g(X1)h(X2)] =

∫ ∞
−∞

∫ ∞
−∞

g(x1)h(X2)f(x1, x2)dx1dx2 ← By Definition

=

∫ ∞
−∞

∫ ∞
−∞

g(x1)h(x2)f1(x1)f2(x2)dx1dx2 ← Because X1 and X2 are independent

=

∫ ∞
−∞

h(x2)f2(x2)[

∫ ∞
−∞

g(x1)f1(x1)dx1]dx2

=

∫ ∞
−∞

h(x2)f2(x2)E[g(X1)]dx2 ← By Definition

= E[g(X1)]

∫ ∞
−∞

h(x2)f2(x2)dx2

= E[g(X1)]E[h(X2)]← By Definition

2.3 Examples

1. Let X1 and X2 be discrete random variables with the following joint pdf:

p(x1, x2) =

{
px2 (1−p)1−x2

x2+1 forx1 = 0, x2 and x2 = 0, 1

0 else

Where 0 < p < 1. Let’s find E[X1X2].

E[X1X2] =
∑

x1∈S1

∑
x2∈S2

x1x2p(x1, x2)
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=

1∑
x2=0

x2∑
x1=0

x1x2p(x1, x2)

= (0)(0)p(0, 0) + (0)(1)p(0, 1) + (1)(1)p(1, 1)

= p(1, 1)

=
p1(1− p)1−1

1 + 1
= p/2

2. Let X1 and X2 be continuous random variables with the following pdf:

f(x1, x2) =

{
exp(−x1) for0 < x1 and 0 < x2 < 1
0 else

Let’s find E[X2
1X2 − 2X1X2 + X2]

E[X2
1X2 − 2X1X2 −X2] = E[(X2

1 − 2X1 + 1)(X2)]

= E[(X2
1 − 2X1 + 1)]E[(X2)]← Since we have shown that X1 and X2 are indpendent

= E[(X1 − 1)2]E[(X2)]

= V [X1]E[(X2)]←Ww know from before that X1 ∼ Exp(1)

= (12)(
1

2
)

= 1/2

Since We know that X1 ∼ Exp(1) ⇒ V [X1] = 12 and we also know that X2 ∼
U(0, 1)⇒ E[X2] = 1+0
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