
1 Method of Moments Estimation

1.1 The Technique

• Coming up with estimators can be challenging.

• Multiple techniques have been developed for finding “good” estimators

• One of these techniques is called the “Method of Moments”

– By definition we have the kth moment of a distribution

µk = E[Xk]

– We also have what is called the kth sample moment

mk =
1

n

n∑
i=1

xki

– If there are k unknown parameter, then we derive the formulas for k different
moments such that each unkown parameter appears in one of the moment
formulas

– We pair the distribution moment formula (in terms of the unkon parameters)
and set them equal to the corresponding sample moments

– We then will have some number of equations with an equal number of un-
known values

– This means there will be a unique solution for our estimators, in terms of the
data

– The resulting solution(s) gives us our estimator(s)

– NOTE: We assume that our sample is all coming from the same distribution,
and that the sample is independent

1.2 Examples

1. Let X1, ..., Xn be i.i.d. Bern(p) find the MOM estimator for p
Solution:

µ1 = E[X1] = p

m1 =
1

n

n∑
i=1

Xi = X̄

So, we set µ1 = m1 and solve the equation in terms of p. In this case the solution
is trivially p̂ = X̄
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2. Let X1, ..., Xn be i.i.d. U(0, θ) find the MOM estimator for θ
Solution:

µ1 = E[X1] =
θ

2

m1 =
1

n

n∑
i=1

Xi = X̄

So, we set µ1 = m1 and solve the equation in terms of θ. In this case the solution
is θ̂ = 2X̄

3. Let X1, ..., Xn be i.i.d. NBinomial(r, p) find the MOM estimators for r and p
Solution:

µ1 = E[X1] =
r

p

µ2 = E[X2
1 ] = V [X1] + E2[X1]

=
r(1− p)
p2

+ (
r

p
)2

=
r(1− p+ r)

p2

m1 =
1

n

n∑
i=1

Xi = X̄

m2 =
1

n

n∑
i=1

X2
i

→ set moments equal

⇒ r

p
= m1

r(1− p+ r)

p2
= m2

⇒ r = m1p

⇒ m2 =
(m1p)(1− p+ pm1)

p2

=
m1(1− p+ pm1)

p

=
m1

p
−m1(1−m1)

⇒ m2 +m1(1−m1) =
m1

p

⇒ p̂ =
m1

m2 +m1(1−m1)
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=
X̄

1
n

∑n
i=1X

2
i + X̄(1− X̄)

⇒ r̂ = m1p̂

=
m2

1

m2 +m1(1−m1)

=
X̄2

1
n

∑n
i=1X

2
i + X̄(1− X̄)

1.3 Exercises

1. Let X1, ..., Xn be i.i.d. Poisson(λ). Find the MOM estimator for λ
Solution:

µ1 = E[X1] = λ

m1 =
1

n

n∑
i=1

Xi = X̄

So, we set µ1 = m1 and solve the equation in terms of λ. In this case the solution
is trivially λ̂ = X̄

2. Let X1, ..., Xn be i.i.d. Geo(p). Find the MOM estimator for p
Solution:

µ1 = E[X1] =
1

p

m1 =
1

n

n∑
i=1

Xi = X̄

So, we set µ1 = m1 and solve the equation in terms of p. In this case the solution
is trivially p̂ = 1

X̄

3. Let X1, ..., Xn be i.i.d. Γ(α, β). Find the MOM estimators for α, β
Solution:

µ1 = E[X1] = αβ

µ2 = E[X2
1 ] = V [X1] + E2[X1]

= αβ2 + (αβ)2

= (1 + α)αβ2

m1 =
1

n

n∑
i=1

Xi = X̄
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m2 =
1

n

n∑
i=1

X2
i

→ set moments equal

⇒ αβ = m1

(1 + α)αβ2 = m2

⇒ β =
m1

α

⇒ m2 = (1 + α)α(
m1

α
)2

=
m2

1

α
+m2

1

⇒ m2 −m2
1 =

m2
1

α

⇒ α̂ =
m2

1

m2 −m2
1

=
X̄2

( 1
n

∑n
i=1X

2
i )− X̄2

⇒ β̂ =
m1

α̂

=
m1

m2
1/(m2 −m2

1)

=
m2 −m2

1

m1

=
( 1
n

∑n
i=1X

2
i )− X̄2

X̄

2 MLE

2.1 The Technique

• Another technique to creating “good” estimators is called Maximum likelihood
estimation (MLE for short)

• As the name suggests, we examine what is called the likelihood of the data, and
then maximize the likelihood function with respect to θ, the unkown parameter(s).

Definition 1 (Likelihood Function). Let x1, ..., xn be observations that correspond to a
sample X1, ..., Xn whose distribution depends on parameter θ. Then, the likelihood func-
tion, L(θ|x1, ..., xn) is defined to be the joint probability (probability density) of x1, ..., xn
if X1, ..., Xn are discrete ( continuous).

• The |x1, ..., xn part of the likelihood statement simply is meant to specify that the
likelihood is considered a function of the parameter θ and that the data represented
as x1, ..., xn are assumed observed and thus fixed.
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• When X1, ..., Xn are i.i.d. the Likelihood function becomes very simple, namely:

When the data is continuous

L(x1, ..., xn|θ) = f(x1, ..., xn|θ)
= f(x1|θ)× ...× f(xn|θ)

and when the data is discrete

L(x1, ..., xn|θ) = p(x1, ..., xn|θ)
= p(x1|θ)× ...× p(xn|θ)

2.2 Examples

1. Let X1, ..., Xn be i.i.d. Exp(δ). find the MLE of δ
Solution:

X1, ..., Xn i.i.d. Exp(δ)

⇒ L(x1, ..., xn|δ) =
n∏
i=1

1

δ
e−

xi
δ I(0 < xi)

=
1

δn
e−
∑n

i=1

xi
δ

n∏
i=1

I(0 < xi)

=
1

δn
e−
∑n

i=1

xi
δ I(0 < x(1))← Since

∏n
i=1 I(0 < xi) ≡ I(0 < x(1))

We wish to maximize L(δ), so one technique we can use is to find a critical point
of L(δ) and confirm that it is a global maximum. Usually Likelihood functions
are not great for taking derivatives, so what we can usually do is recognize that
ln(L(δ)) is monotonically increasing in δ and therefore L(δ) will be maximized for
the same value of δ that ln(L(δ)), and then maximize ln(L(δ))

ln(Lδ)) = `(δ) = −n ln(δ)−
n∑
i=1

xi
δ

+ ln
(
I(0 < x(1))

)
⇒ d`(δ)

dδ
=
−n
δ

+

∑n
i=1 xi
δ2

set d`(δ)
dδ = 0

⇒ 0 =
−n
δ

+

∑n
i=1 xi
δ2

⇒ n =

∑n
i=1 xi
δ
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⇒ δ̂ = X̄

check to make sure critical point is maximum

L(0) = 0

L(∞) = 0

d2`(δ)

dδ2
=

n

δ2
− 2

∑n
i=1 xi
δ3

⇒ d2`(δ)

dδ2
@(δ = X̄) =

n

X̄2
− 2nX̄

X̄3

=
n− 2n

X̄2

< 0

Since the second derivative is negative,

we have a local, and therefore global max

Therefore δ̂ = X̄ is our MLE.

Note, we perform the second derivative test to confirm that the critical point is in
fact a maximum, but this is not the only way that this can be done. Though more
cumbersome, one could compare the value of the likelihood function as the critical
point to the value of the likelihood function at the boundaries of the parameter to
show that the likelihood is largest at the critical point, thus making that critical
point a maximum.

2. Let X1, ..., Xn be i.i.d. U(0, θ). Find the MLE of θ.
Solution:

L(θ) =
n∏
i=1

1

θ
I(0 < xi < θ)

=
1

θn

n∏
i=1

I(0 < xi < θ)

=
1

θn
I(0 < x(1) < x(n) < θ)

=
1

θn
I(0 < x(1))I(x(n) < θ)

L(θ) =

{
0 if θ ≤ x(n)
1
θn if x(n) < θ

We see that L(θ) is a monotonically decreasing function of θ when θ > x(n) so on
that interval L(θ) is maximized when θ = x(n) and L(θ) = 0 if θ ≤ x(n) thus, L(θ)

is globally maximized when θ = x(n) thus our MLE is θ̂ = x(n)
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2.3 Exercises

1. Let X1, ..., Xn be i.i.d. Poisson(λ). Find the MLE of λ.

2. Let X1, ..., Xn be i.i.d. N(0, σ2). Find the MLE of σ2.

2.4 Solutions

1. Let X1, ..., Xn be i.i.d. Poisson(λ). Find the MLE of λ.
Solution:

L(λ) =
n∏
i=1

(
λxi

xi!
e−λ)

= λ
∑n

i=1
xie−nλ

n∏
i=1

1

xi!

⇒ ln(L(λ)) = `(λ) = (
n∑
i=1

xi) ln(λ)− nλ+
n∑
i=1

− ln(xi!)

⇒ d`(λ)

dλ
=

(
∑n
i=1 xi)

λ
− n

Set d`(λ)
dλ = 0

⇒ (
∑n
i=1 xi)

λ
− n = 0

⇒ λ̂ = X̄

second derivative test to confirm max

→ d2`(λ)

dλ2
= −(

∑n
i=1 xi)

λ2

< 0 for all λ > 0

Thus λ̂ = X̄ is a maximal value, and thus is our MLE.

2. Let X1, ..., Xn be i.i.d. N(0, σ2). Find the MLE of σ2.

Solution:

L(σ2) =
n∏
i=1

1√
2πσ2

e−
1

2σ2
(xi)

2

=

(
1√

2πσ2

)n
e−

1
2σ2

∑n

i=1
(xi)

2

7



⇒ ln(L(σ2)) = `(σ2) = −n
2

ln(2πσ2) +− 1

2σ2

n∑
i=1

(xi)
2

⇒ d`(σ2)

dσ2
= −n

2

2π

2πσ2
+−

∑n
i=1 x

2
i

2
(−1)

1

(σ2)2

↑ Note, we differentiate with ↑
respect to σ2 not σ

Set d`(σ2)
dσ2 = 0

⇒ −n
2

1

σ2
+

∑n
i=1 x

2
i

2

1

(σ2)2
= 0

⇒
∑n
i=1 x

2
i

2

1

σ2
=

n

2

⇒
∑n
i=1 x

2
i

n
= σ2

second derivative test to confirm max

→ d2`(σ2)

d(σ2)2
= −n

2

−1

(σ2)2
+

∑n
i=1 x

2
i

2

−2

(σ2)3

=
nσ2

2(σ2)3
+
−2
∑n
i=1 x

2
i

2(σ2)3

=
nσ2 − 2

∑n
i=1 x

2
i

2(σ2)3

check second derivative at σ2 =

∑n

i=1
x2i

n

→ d2`(σ2)

d(σ2)2
|
σ2=

∑n

i=1
x2
i

n

=
n

∑n

i=1
x2i

n − 2
∑n
i=1 x

2
i

2((

∑n

i=1
x2i

n )2)3

< 0

Since
n∑
i=1

x2
i − 2

n∑
i=1

x2
i < 0

Thus σ̂2 =

∑n

i=1
x2i

n is a maximal value and therefore is our MLE.

2.5 Invariance Property

• One neat feature of Maximum Likelihood estimation is the Invariance propery of
MLEs

Theorem 1. Let θ be an unknown parameter, θ̂ be the MLE for θ, and let g be a function
that is defined over the range of possible values of θ. Then the MLE of g(θ) is g(θ̂)
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2.6 Examples

Let X1, ..., Xn be i.i.d. Exp(δ). We have shown that X̄ =

∑n

i=1
Xi

n is the MLE for δ.
Therefore, by the invariance property:

1. X̄2 the MLE for δ2 (the variance of the underlying population).

2. The MLE for
√
δ2 + ln(δ) is

√
X̄2 + ln(x̄)
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