
1 Evaluating Estimators

Recall:

Definition: A statistic is a function of some or all of the data collected that does not
rely on any unknown parameter values.

Definition: An estimator is a statistic That is meant to estimate an unknown parameter
value NOTE: Since an estimator is a stistic, it cannont be a function of any unknown
values (typically, parameters)

1.1 Examples

Let X1, ..., Xn be i.i.d. N(µ, σ2) where −∞ < µ <∞ and 0 < σ <∞ are unknown.

1. X̄ = 1
n

∑n
i=1Xi is an estimator for µ

2. S2 = 1
n−1

∑n
i=1(Xi − X̄)2 is an estimator for σ2

3. 1
n

∑n
i=1(Xi − X̄)2 is another estimator for σ2

4. X1 is an estimator for µ

5. X1+X2
2 is an estimator for µ

6. (X1−X2)2

2 is an estimator for σ2

We can see that there are many estimators for the same parameters, so how do we
determine the best estimator?

Definition: Let θ̂ be an estimator for the unknown parameter, θ. Then if E[θ̂] = θ
then θ̂ is said to be unbiased. If E[θ̂] 6= θ then θ̂ is said to be biased.

Definition: The bias of a point estimator θ̂ for unknown parameter θ is given as
B(θ̂) = E[θ̂]− θ

Definition: the Mean square error of a point estimator θ̂ for unknown parameter θ is
given as MSE(θ̂) = E[(θ̂ − θ)2]

1.2 Examples

Let X1, ..., Xn be i.i.d. N(µ, σ2) where −∞ < µ <∞ and 0 < σ <∞ are unknown.
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1. We said that X̄ was an estimator for µ, so

E[X̄] = µ← Since X̄ ∼ N(µ, σ
2

n )

⇒ B(X̄) = E[X̄]− µ
= µ− µ
= 0

2. We said that S2 was an estimator for σ2, so

E[
n− 1

σ2
S2] = n− 1← Since n−1

σ2 S
2 ∼ χ2

n−1 ≡ Γ(n−12 , 2)

⇒ E[S2] = σ2

⇒ B(S2) = E[S2]− σ2

= σ2 − σ2

= 0

3. We said that X1 is an estimator for µ, so

E[X1] = µ← Since X1 ∼ N(µ, σ2)

⇒ B(X1) = E[X1]− µ
= µ− µ
= 0

4. We said that (X1−X2)2

2 is an estimator for σ2. So,

E[
(X1 −X2)

2

2
] = E[

1

2
(X2

1 − 2X1X2 +X2
2 )]

=
1

2
(E[X2

1 ]− 2E[X1X2] +X2
2 ])

=
1

2
(σ2 + µ2 − 2µ2 + σ2 + µ2])← because X1 and X2 are i.i.d. N(µ, σ2)

=
1

2
(2σ2)

= σ2

⇒ B(
(X1 −X2)

2

2
) = E[

(X1 −X2)
2

2
]− σ2

= σ2 − σ2

= 0

Note, both X̄ and X1 are unbiased for µ. so which estimator is better? The one
that has a lower MSE, which is means to measure how precise the estimator is
(the bias is a measure of how accurate an estimator is).
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5. The MSE of X̄ is

X̄ − µ ∼ N(0,
σ2

n
)← since X̄ ∼ N(µ, σ

2

n )

⇒ E[(X̄ − µ)2] = V [(X̄ − µ)] + E2[X̄ − µ]

=
σ2

n
+ 0

=
σ2

n

The MSE of X1 is

X1 − µ ∼ N(0, σ2)← since X1 ∼ N(µ, σ2)

⇒ E[(X1 − µ)2] = V [(X1 − µ)] + E2[X1 − µ]

= σ2 + 0

= σ2

Since MSE(X̄) < MSE(X1) we conclude that X̄ is a better estimator for µ,
because it is more likely to be closer to the value of µ

1.3 Exercises

1. Let X1...Xn be i.i.d. Exp(δ)

a) Find B(X1)

b) Find MSE(X1)

c) Find B(X̄)

d) Find MSE(X̄)

e) Which Estimator is better?

2. Let X1...Xn be i.i.d. Poisson(λ)

a) Find B(X1)

b) Find MSE(X1)

c) Find B(X̄)

d) Find MSE(X̄)

e) Which Estimator is better?

1.4 Solutions

1. Let X1...Xn be i.i.d. Exp(δ)
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a) Find B(X1)
Solution:

B(X1) = E[X1]− δ
= δ − δ
= 0

b) Find MSE(X1)
Solution:

MSE(X1) = E[(X1 − δ)2]
= E[X2

1 − 2δX1 + δ2]

= E[X2
1 ]− 2δE[X1] + δ2

= V [X1] + E2[X1]− 2δE[X1] + δ2

= δ2 + δ2 − 2δ2 + δ2

= δ2

c) Find B(X̄)
Solution:

B(X̄) = E[X̄]− δ
= δ − δ ← because

∑n
i=1X1 ∼ Γ(n, δ)

= 0

d) Find MSE(X̄)
Solution:

MSE(X̄) = E[(X̄ − δ)2]
= E[X̄2 − 2δX̄ + δ2]

= E[X̄2]− 2δE[X̄] + δ2

= V [X̄] + E2[X̄]− 2δE[X̄] + δ2

=
δ2

n
+ δ2 − 2δ2 + δ2

=
δ2

n
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e) Which Estimator is better?
Solution:
Since both X̄ and X1 are unbiased, we can compare MSEs to decide which
is better. Since MSE(X̄) < MSE(X1) we conclude that X̄ is the better
estimator.

2. Let X1...Xn be i.i.d. Poisson(λ)

a) Find B(X1)
Solution:

B(X1) = E[X1]− λ
= λ− λ
= 0

b) Find MSE(X1)
Solution:

MSE(X1) = E[(X1 − λ)2]

= E[X2
1 − 2λX1 + λ2]

= E[X2
1 ]− 2λE[X1] + λ2

= V [X1] + E2[X1]− 2λE[X1] + λ2

= λ+ λ2 − 2λ2 + λ2

= λ

c) Find B(X̄)
Solution:

B(X̄) = E[X̄]− λ

=
1

n
E[

n∑
i=1

Xi]− λ

=
1

n
nλ− λ← Since

∑n
i=1X1 ∼ Poiss(nλ)

= λ− λ
= 0

d) Find MSE(X̄)
Solution:
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MSE(X̄) = E[(X̄ − λ)2]

= E[X̄2 − 2λX̄ + λ2]

= E[X̄2]− 2λE[X̄] + λ2

= V [X̄] + E2[X̄]− 2λE[X̄] + λ2

=
1

n2
V [(

n∑
i=1

Xi)] + λ2 − 2λ2 + λ2

=
1

n2
nλ

=
λ

n

e) Which Estimator is better?
Solution:
Since both X̄ and X1 are unbiased, we can compare MSEs to decide which
is better. Since MSE(X̄) < MSE(X1) we conclude that X̄ is the better
estimator.

2 Common Unbiased Estimators

We have already discussed the most common unbiased estimators one will work with
when our population is N(µ, σ2), namely X̄ and S2. what are some other common
situations we might get in to?

1. Instead of measuring a quantity in a population we want to measure a proportion
of a population

• i.e. what proportion, 0 < p < 1, of UCONN students have a car?

• Again we take a sample from this population of size n

• X1, ..., Xn can be thought of as i.i.d. random variables with distribution
Bern(p)

• If Xi = 1 then the person has a car, and if Xi = 0 then the person doesn’t
have a car

• Our best estimate of p will be 1
n

∑n
i=1Xi, the sample proportion of people

who have a car

2. What if we want to compare two independent populations, each distributedN(µi, σ
2
i )

for i = 1, 2

• i.e. What is the difference between the average heights of male and female
UCONN students

• We take samples from both populations of sizen1, n2
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• X1, ..., Xn1 can be thought of as the n1 female students sampled, and Y1, ..., Yn2

can be thought of as the n2 male students sampled. we assume that all random
variables measured are independent and all the X ′s are distributed N(µ1, σ

2
1)

and the Y ′s are distributed N(µ2, σ
2
2)

• Our best estimate of the difference in average heights µ1 − µ2 will be X̄ − Ȳ

3. Another situation that can often come up is measuring the difference between two
independent population proportions, p1 − p2, where both p1 and p2 range from 0
to 1.

• i.e. What is the difference between the proportion of male and female UCONN
students with cars

• We take samples from both populations of sizen1, n2

• X1, ..., Xn1 can be thought of as the n1 female students sampled, and Y1, ..., Yn2

can be thought of as the n2 male students sampled. We assume that all
random variables measured are independent and all the X ′s are distributed
Bern(p1) and the Y ′s are distributed Bern(p2)

• Our best estimate of the difference in average heights p1−p2 will be 1
n1

∑n1
i=1Xi−

1
n2

∑n2
i=1 Yi

2.1 Exercises

Show that the following are unbiased statistics for their corresponding parameter and
find their MSE

1. p̂ = 1
n

∑n
i=1Xi for p where X1, ..., Xn are i.i.d. Bern(p)

2. ̂µ1 − µ2 = X̄−Ȳ for µ1−µ2 where X1, ..., Xn1 are distributed N(µ1, σ
2
1), Y1, ..., Yn2

are distributed N(µ2, σ
2
2), and all X ′s and Y ′s are assumed independent

3. ̂p1 − p2 = 1
n1

∑n1
i=1Xi − 1

n2

∑n2
i=1 Yi for p1 − p2 where X1, ..., Xn1 are distributed

Bern(p1), Y1, ..., Yn2 are distributed Bern(p2), and all X ′s and Y ′s are assumed
independent

2.2 Solutions

Show that the following are unbiased statistics for their corresponding parameter and
find their MSE

1. p̂ = 1
n

∑n
i=1Xi for p where X1, ..., Xn are i.i.d. Bern(p)

Solution:

B(p̂) = E[
1

n

n∑
i=1

Xi]− p
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=
1

n
E[

n∑
i=1

Xi]− p

=
1

n
(np)− p← since

∑n
i=1Xi ∼ Bin(n, p)

= 0

MSE(p̂) = E[(
1

n

n∑
i=1

Xi − p)2]

= V [
1

n

n∑
i=1

Xi − p] + E2[
1

n

n∑
i=1

Xi − p]

=
1

n2
V [

n∑
i=1

Xi] + (
1

n
E[

n∑
i=1

Xi]− p)2

=
1

n2
(np(1− p)) + (

1

n
(np)− p)2

=
p(1− p)

n

2. ̂µ1 − µ2 = X̄−Ȳ for µ1−µ2 where X1, ..., Xn1 are distributed N(µ1, σ
2
1), Y1, ..., Yn2

are distributed N(µ2, σ
2
2), and all X ′s and Y ′s are assumed independent

Solution:

B( ̂µ1 − µ2) = E[X̄ − Ȳ ]− (µ1 − µ2)
= E[X̄]− E[Ȳ ]− µ1 + µ2

= µ1 − µ2 − µ1 + µ2 ← Since X̄ ∼ N(µ1,
σ2
1
n1

) and Ȳ ∼ N(µ2,
σ2
2
n2

)

= 0

MSE( ̂µ1 − µ2) = E[(X̄ − Ȳ − (µ1 − µ2))2]
= V [X̄ − Ȳ − (µ1 − µ2)] + E2[X̄ − Ȳ − (µ1 − µ2)]
= V [X̄ − Ȳ ] + (E[X̄ − Ȳ ]− (µ1 − µ2))2

= V [X̄] + V [Ȳ ] + (E[X̄]− E[Ȳ ]− (µ1 − µ2))2 ← Since all the X ′s and Y ′s

are independent

=
σ21
n1

+
σ22
n2

+ (µ1 − µ2 − µ1 + µ2)
2

=
σ21
n1

+
σ22
n2

3. ̂p1 − p2 = 1
n1

∑n1
i=1Xi − 1

n2

∑n2
i=1 Yi for p1 − p2 where X1, ..., Xn1 are distributed

Bern(p1), Y1, ..., Yn2 are distributed Bern(p2), and all X ′s and Y ′s are assumed
independent
Solution:
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B( ̂p1 − p2) = E[
1

n1

n1∑
i=1

Xi −
1

n2

n2∑
i=1

Yi]− (p1 − p2)

= E[
1

n1

n1∑
i=1

Xi]− E[
1

n2

n2∑
i=1

Yi]− p1 + p2

=
1

n1
E[

n1∑
i=1

Xi]−
1

n2
E[

n2∑
i=1

Yi]− p1 + p2

=
1

n1
(n1p1)−

1

n2
(n2p2)− p1 + p2 ← Since

∑n1
i=1Xi ∼ Bin(n1, p1) and∑n2

i=1 Yi ∼ Bin(n2, p2)

= 0

MSE( ̂p1 − p2) = E[(
1

n1

n1∑
i=1

Xi −
1

n2

n2∑
i=1

Yi − (p1 − p2))2]

= V [
1

n1

n1∑
i=1

Xi −
1

n2

n2∑
i=1

Yi − (p1 − p2)] + E2[
1

n1

n1∑
i=1

Xi −
1

n2

n2∑
i=1

Yi − (p1 − p2)]

= V [
1

n1

n1∑
i=1

Xi −
1

n2

n2∑
i=1

Yi] + (E[
1

n1

n1∑
i=1

Xi −
1

n2

n2∑
i=1

Yi]− (p1 − p2))2

= V [
1

n1

n1∑
i=1

Xi] + V [
1

n2

n2∑
i=1

Yi] + (E[
1

n1

n1∑
i=1

Xi]− E[
1

n2

n2∑
i=1

Yi]− (p1 − p2))2

↑ Since all the X ′s and Y ′s are independent

=
1

n21
V [

n1∑
i=1

Xi] +
1

n22
V [

n2∑
i=1

Yi] + (
1

n1
E[

n1∑
i=1

Xi]−
1

n1
E[

n2∑
i=1

Yi]− (p1 − p2))2

=
n1p1(1− p1)

n21
+
n2p2(1− p2)

n2
+ (

n1p1
n1
− n2p2

n2
− p1 + p2)

2

=
p1(1− p1)

n1
+
p2(1− p2)

n2

3 Error of Estimation

Definition: The Error of an estimator θ̂ is defined to be

ε = |θ̂ − θ|

Because θ̂ is a random variable, we see that ε is also a random variable. Usually what
we are interested in is the probability that the error of our estimate will be of a certain
size. Let b > 0, then

P (ε < b) = P (|θ̂ − θ| < b)
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= P (−b < θ̂ − θ < b)

= P (θ − b < θ̂ < θ + b)
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