
1 Relative Efficiency

• Now that we have covered some basics of Estimation, we are going to cover some
basic Estimation Theory concepts

• The first step in evaluating estimators is to measure them in terms of qualities
that we want

• We already covered this when we discussed:

– Bias

– MSE

• Now that we have a yard stick to measure estimators by, the next step is to compare
estimators

• One way to compare estimators is in terms of efficiency, which is related to MSE

• Efficiency refers to the concept of how much does our estimator vary

• So, when comparing estimators it makes sense that we would want o consider their
relative efficiency

Definition: Let θ̂1 and θ̂2 be two unbiased estimators for θ. Then the efficiency of θ̂1
relative to θ̂2 is defined to be

eff(θ̂1, θ̂2) =
V [θ̂2]

V [θ̂1]

We would like to describe one estimator as better than another in terms of efficiency
if it is more efficient than the other. In terms of the relative efficiency, we would say
that θ̂1 is more efficient than θ̂2 iff

eff(θ̂1, θ̂2) > 1

We would say that θ̂2 is more efficient than θ̂1 iff

eff(θ̂1, θ̂2) < 1

Finally, we would say that the two are equally efficient iff

eff(θ̂1, θ̂2) = 1

1.1 Examples

Let X1, ..., Xn be i.i.d. N(µ, σ2).
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1. Show that eff(Xi, Xj) = 1 for i, j = 1, ..., n, where Xi and Xj are estimators for µ
Solution:

Xi ∼ N(µ, σ2) for all i

Xj ∼ N(µ, σ2) for all j

⇒ eff(Xi, Xj) =
V [Xj ]

V [Xi]

=
σ2

σ2

= 1

2. Show that eff(X1+X2
2 , X1) > 1

Solution:

X1, X2 i.i.d. N(µ, σ2)

⇒ X1 +X2

2
∼ N(µ,

σ2

2
)

⇒ eff(
X1 +X2

2
, X1) =

V [X1]

V [X1+X2
2 ]

=
σ2

σ2/2

= 2

So, we would say that X1+X2
2 is twice as efficient as X1 alone.

3. Based on their relative efficiency, which estimator would you prefer to use for µ,
X1+X2

2 or X1+X2+X3
3 ?

Solution:

X1, X2, X3 i.i.d. N(µ, σ2)

⇒ X1 +X2

2
∼ N(µ,

σ2

2
)

⇒ X1 +X2 +X3

3
∼ N(µ,

σ2

3
)

⇒ eff(
X1 +X2

2
,
X1 +X2 +X3

3
) =

V [X1+X2+X3
3 ]

V [X1+X2
2 ]

=
σ2/3

σ2/2

=
2

3
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So, since eff(X1+X2
2 , X1+X2+X3

3 ) < 1 we would conclude that X1+X2
2 is worse than

X1+X2+X3
3

1.2 Exercises

Let X1, X2 be i.i.d. U(0, θ) and let θ̂1 = 2X1, θ̂2 = X1 +X2, and θ̂3 = 3
2X(2)

1. Show that all of these estimators are unbiased

2. Compare the relative efficiencies between all three (i.e. compared the relative
efficency of θ̂1 and θ̂2, θ̂1 and θ̂3, and θ̂2 and θ̂3

3. Which estimator would you prefer to use based on the relative efficiencies?

1.3 Solutions

Let X1, X2 be i.i.d. U(0, θ) and let θ̂1 = 2X1, θ̂2 = X1 +X2, and θ̂3 = 3
2X(2)

1. Show that all of these estimators are unbiased
Solution:

X1, X2 i.i.d. U(0, θ)

⇒ X(2)/θ ∼ β(2, 1)

→ E[2X1] = 2
θ

2
= θ

→ E[X1 +X2] = EX1 + E[X2]

=
θ

2
+
θ

2
= θ

→ E[
3

2
X(2)] = E[

3

2
(θ)

X(2)

θ
]

=
3θ

2
E[
X(2)

θ
]

=
3θ

2

2

2 + 1
= θ

2. Compare the relative efficiencies between all three (i.e. compared the relative effi-
cency of θ̂1 and θ̂2, θ̂1 and θ̂3, and θ̂2 and θ̂3

eff(2X1, X1 +X2) =
V [X1 +X2]

V [2X1]
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=
V [X1] + V [X2]

4V [X1]
← Since, X1 and X2 are i.i.d.

=
θ2/12 + θ2/12

4θ2/12

=
1

2

eff(2X1,
3

2
X(2)) =

V [32X(2)]

V [2X1]

=
9θ2

4 V [X(2)/θ]

4V [X1]

=

9θ2

4
2

(2+1)2(2+1+1)

4θ2/12

=
3

8

eff(X1 +X2,
3

2
X(2)) =

V [32X(2)]

V [X1 +X2]

=
9θ2

4 V [X(2)/θ]

V [X1] + V [X2]

=

9θ2

4
2

(2+1)2(2+1+1)

2θ2/12

=
3

4

Note: eff(X1 +X2,
3
2X(2)) = eff(2X1,

3
2X(2))/eff(2X1, X1 +X2)

3. Which estimator would you prefer to use based on the relative efficiencies?
Solution:
Since eff(X1 +X2,

3
2X(2)) < 1, eff(2X1,

3
2X(2)) < 1, and eff(2X1, X1 +X2) < 1 we

can rank the estimators in terms of efficiency as

a) 3
2X(2)

b) X1 +X2

c) 2X1

Therefore, 3
2X(2) is the best in terms of efficiency

2 Consistency

Another way we can evaluate estimators, is how that perform with large sample sizes.
We encapsulate this idea with Consistency
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Definition:
An estimator θ̂n is a consistent estimator for θ iff, for any ε > 0

lim
n→∞

P (|θ̂n − θ| ≤ ε) = 1

or, equivalently,
lim
n→∞

P (|θ̂n − θ| > ε) = 0

Basically, what this is saying is that no matter how close we ask that the estimator to
be to θ there is an n large enough to guarantee that the estimator will be that close to
θ.

Theorem: An unbiased estimator θ̂n is a consistent estimator of θ if

lim
n→∞

V [θ̂n] = 0

Proof. Recall:
Remeber Tchebysheff’s inequality which states:
For R.V. X with E[X] and V [X] <∞, then for any k > 0

P (|X − E[X]| > k
√
V [X]) ≤ 1

k2

So, letting X = θ̂n in the above inequality, we have

P (|θ̂ − E[θ̂n]| > k
√
V [θ̂n]) ≤ 1

k2

for any k > 0.
Now, we will use this theorem to show that any unbiased estimator θ̂n that has the
property limn→∞ V [θ̂n] = 0 satisfies the defintion of a consistent estimator. So, we selct
an aribitrary ε > 0, and let k = ε√

V [θ̂n]
. Now, we plug this value for k into Tchebyscheff’s

inequality and we get

P (|θ̂n − E[θ̂n]| > ε√
V [θ̂n]

√
V [θ̂n]) = P (|θ̂n − E[θ̂n]| > ε)

≤

 1

ε/
√
V [θ̂n]

2

=
V [θ̂n]

ε2

⇒ lim
n→∞

P (|θ̂n − E[θ̂n]| > ε) ≤ lim
n→∞

V [θ̂n]

ε2

= 0
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Because we selected ε arbitrarily, we see that this implies that

⇒ lim
n→∞

P (|θ̂n − E[θ̂n]| > ε) = 0

for all ε > 0. Thus θ̂n is a consistent estimator for θ

The definition of a consistent estimator is actually identical the a more general defi-
nition that applies to all random variables:
Definition:
A sequence of random variables Xn converges in probability to a value θ iff for any ε > 0

lim
n→∞

P (|Xn − θ| ≤ ε) = 1

or, equivalently,
lim
n→∞

P (|Xn − θ| > ε) = 0

So, we might say that an estimator is consistent for θ if the estimator converges in
probability to θ.

Sometimes we want to show that an estimator θ̂n cannot be consistent for a parameter
θ. In these cases we can use the following theorem (whose proof will be omitted):
Theorem:
Given estimator (or sequence of Random variables) θ̂n, if limn→∞ V [θ̂n] = c, where c > 0
is a constant value for all n, then we can say that θ̂ is not a consitent estimator (or al-
ternatively, does not converge in probability to θ).

Sometimes we are working with more than one random variable, and there are theo-
rems that allows us to make stamtents about the convergence of these random variables:

Theorem: Let Xn converge in probability to θ and let Yn converge in probability to δ,
then

1. Xn + Yn converges in probability to θ + δ

2. Xn × Yn converges in probability to θ × δ

3. If δ 6= 0, then Xn/Yn converges in probability to θ/δ

4. If g() is a real valued, continuous function (at θ), then g(Xn) converges in proba-
bility to g(θ)

2.1 Examples

Let X1, ..., Xn be i.i.d. N(µ, σ2)
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1. We know that X̄ is an unbiased estimator for µ. Show that X̄ is a consistent
estimator for µ

X1, ..., Xn i.i.d. N(0, 1)

⇒ X̄ ∼ N(µ,
σ2

n
)

⇒ V [X̄] =
σ2

n

⇒ lim
n→∞

V [X̄] = lim
n→∞

σ2

n
= 0

Thus, X̄ is a consistent estimator for µ

2. Show that X1 is not a consistent estimator for µ

⇒ X1 ∼ N(µ, σ2)

⇒ V [X1] = σ2

⇒ lim
n→∞

V [X̄] = lim
n→∞

σ2

= σ2

3. We know that S2
X is an unbiased estimator for σ2. Show that S2

X is a consistent
estimator for σ2

X1, ..., Xn i.i.d. N(µ, σ2)

⇒ (n− 1)

σ2
S2
X ∼ χ2

n−1

⇒ V [S2
X ] =

σ4

(n− 1)2
V [

(n− 1)

σ2
]

=
σ4

(n− 1)2
(
n− 1

2
)(22)

=
2σ4

(n− 1)

⇒ limn→∞V [S2
X ] = lim

n→∞
2σ4

(n− 1)

= 0

Thus, S2
X is a consistent estimator for σ2
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2.2 Exercises

Let X1, ..., Xn be i.i.d. N(µ, σ2)

1. Show that (X1−X2)2

2 is an unbiased estimator for σ2

2. Show that (X1−X2)2

2 is not a consistent estimator for σ2

2.3 Solutions

Let X1, ..., Xn be i.i.d. N(µ, σ2)

1. Show that (X1−X2)2

2 is an unbiased estimator for σ2

X1, X2 i.i.d. N(µ, σ2)

⇒ X1 −X2 ∼ N(0, 2σ2)

⇒ X1 −X2√
2σ

∼ N(0, 1)

⇒ (X1 −X2)
2

2σ2
∼ χ2

1

⇒ E[
(x1 −X2)

2

2
] = σ2E[

(x1 −X2)
2

2σ2
]

= σ2(
1

2
)(2)

= σ2

2. Show that (X1−X2)2

2 is not a consistent estimator for σ2

X1, X2 i.i.d. N(µ, σ2)

⇒ X1 −X2 ∼ N(0, 2σ2)

⇒ X1 −X2√
2σ

∼ N(0, 1)

⇒ (X1 −X2)
2

2σ2
∼ χ2

1

⇒ V [
(X1 −X2)

2

2
] = σ4V [

(x1 −X2)
2

2σ2
]

= σ2(
1

2
)(22)

= 2σ4

⇒ lim
n→∞

V [
(X1 −X2)

2

2
] = lim

n→∞
2σ4

= 2σ4

So, (X1−X2)2

2 is not a consistent estimator for σ2

8


