
1 Sufficiency

1.1 Definition

• so far, we have evaluated estimators using the concepts of Bias and Efficiency

• Another concept we may use to evaluate estimators is Sufficiency

Definition:
Let X1, ..., Xn be a random sample from a probability distribution with unknown pa-
rameter θ. Then the statistic U = g(X1, ..., Xn) is said to be Sufficient for θ if the
conditional distribution of X1, ..., Xn given U does not depend on θ

• Sufficiency is meant to encapsulate the idea of information when we summarize
the data (sample) with a statistic (estimator)

• In other words, if a statistic is sufficient, then we are essentially saying, that the
statistic tells us everything that we want to know about θ that the raw data could
tell us.

1.2 Example

Let X1, ..., Xn be i.i.d. Bern(p) where p is unknown. Let Y =
∑n
i=1Xi. Is Y a sufficient

statistic?
Solution:
Y is sufficient if the conditional distribution of X1, ..., Xn given Y is free of p. in other
words we need to find P (X1 = x1, ..., Xn = xn|Y = y)

P (X1 = x1, ..., Xn = xn|Y = y) =
P (X1 = x1, ..., Xn = xn, Y = y)

P (Y = y)

Note, if y 6=
∑n
i=1 xi then P (X1 = x1, ..., Xn = xn, Y = y) must be 0. If y =

∑n
i=1 xi,

the event X1 = x1, ..., Xn = xn, Y = y is the event that y of n i.i.d. Bernoullis are 1,
and n− y Bernoullis are 0. So,

P (X1 = x1, ..., Xn = xn, Y = y)

P (Y = y)
=

{
py(1−p)n−y
P (Y=y) ify =

∑n
i=1 xi

0 else

=


py(1−p)n−y

(ny)py(1−p)n−y
ify =

∑n
i=1 xi

0 else

=

{ 1

(ny)
ify =

∑n
i=1 xi

0 else

Because the distribution of the data given Y is free of p, we conclude that Y is sufficient
for p.
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1.3 Factorization Theorem

• While this example appears fairly straight forward, there are many situations where
checking to see if a statistic is sufficient is algebraically difficult

• Additionally, the definition only tells us how to confirm that a statistic is sufficient.
that is, it cannot help us find a sufficient statistic

• Luckily there is a theorem that can help us with both of these issues, but first we
will introduce some new notation

Now we can state our the Factorization Theorem that will make finding sufficient
statistics easier: Theorem:
Let U be a statistic of the random sample X1, ..., Xn whose distribution depends on the
unknown parameter θ. U is a sufficient statistic for θ iff L(x1, ..., xn|θ) can be factored
into two nonnegative functions,

L(x1, ..., xn|θ) = g(u, θ)× h(x1, ..., xn)

Where g(u, θ is a function of u and θ, and h(x1, ..., xn) is not a function of θ

1.4 Example

Let X1, ..., Xn be i.i.d. Bern(p) where p is unknown. Let Y =
∑n
i=1Xi. Show that Y is

a sufficient statistic using the factorization theorem. Solution:

L(x1, ..., xn|p) = f(x1, ...xn|p)(= P (X1 = x1, ..., Xn = xn))

= f(x1|p)...f(xn|p)(= P (X1 = x1)...P (Xn = xn))

= (px1(1− p)1−x1)...(px1(1− p)1−x1)

= p
∑n

i=1
xi(1− p)n−

∑n

i=1
xi

So, here g(u, θ) = g(y, p) = p
∑n

i=1
xi(1− p)n−

∑n

i=1
xi and h(x1, ..., xn) = 1. Thus, by the

factorization theorem Y =
∑n
i=1Xi is a sufficient statistic.

1.5 Exercises

1. Let X1, ..., Xn be i.i.d. Exp(δ). Show that
∑n
i=1Xi is a sufficient statistic for δ

2. Let X1, ..., Xn be i.i.d. Exp(δ). Show that X̄ is a sufficient statistic for δ

3. Let X1, ..., Xn be i.i.d. Poisson(λ). Show that
∑n
i=1Xi is a sufficient statistic for

λ
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1.6 Solutions

1. Let X1, ..., Xn be i.i.d. Exp(δ). Show that
∑n
i=1Xi is a sufficient statistic for δ

L(x1, ..., xn|δ) = f(x1, ..., xn|δ)
= f(x1|δ)...f(xn|δ)

=
e−

x1
δ

δ
I(0 < x1)...

e−
xn
δ

δ
I(0 < xn)

=
1

δn
e−

∑n

i=1
xi

δ I(0 < x1)...I(0 < xn)

Here we have g(
∑n
i=1 xi, δ) = 1

δn e
−
∑n

i=1
xi

δ and h(x1, ..., xn) = I(0 < x1)...I(0 <
xn). Thus, by the factorization theorem we see that

∑n
i=1Xi is sufficient for δ.

2. Let X1, ..., Xn be i.i.d. Exp(δ). Show that X̄ is a sufficient statistic for δ

L(x1, ..., xn|δ) = f(x1, ..., xn|δ)
= f(x1|δ)...f(xn|δ)

=
e−

x1
δ

δ
I(0 < x1)...

e−
xn
δ

δ
I(0 < xn)

=
1

δn
e−

∑n

i=1
xi

δ I(0 < x1)...I(0 < xn)

=
1

δn
e−

nx̄
δ I(0 < x(1))

Here we have g(x̄, δ) = 1
δn e

−nx̄
δ and h(x1, ..., xn) = I(0 < x(1)). Thus, by the

factorization theorem we see that X̄ is sufficient for δ.

3. Let X1, ..., Xn be i.i.d. Poisson(λ). Show that
∑n
i=1Xi is a sufficient statistic for

λ

L(x1, ..., xn|λ) = f(x1, ...xn|λ)(= P (X1 = x1, ..., Xn = xn))

= f(x1|λ)...f(xn|λ)(= P (X1 = x1)...P (Xn = xn))

=
λx1

x1!
e−λ...

λxn

xn!
e−λ

= λ
∑n

i=1
xie−nλ

n∏
i=1

1

xi!

Here we have g(
∑n
i=1 xi, λ) = λ

∑n

i=1
xie−nλ and h(x1, ..., xn) =

∏n
i=1

1
xi!

. Thus, by
the factorization theorem we see that

∑n
i=1 xi is sufficient for λ.
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2 Rao-Blackwell Theorem

2.1 The Theorem

Theorem: Let θ̂ be an unbiased estimator for θ such that V [θ̂] <∞. If U is a sufficient
statistic for θ, then θ̂∗ = E[θ̂|U ] has the following properties:

1. θ̂∗ is a statistic

2. E[θ̂∗] = θ

3. V [θ̂∗] ≤ V [θ̂]

Proof. 1. θ̂∗ is a statistic
By definition we have that

f(θ̂|U) =
f(θ̂, U)

f(U)

We can think of the joint distribution of θ̂ and U as

f(θ̂, U)) = f(θ̂, U |X1 = x1, ..., Xn = xx)f(X1 = x1, ..., Xn = xx)

This implies that

f(θ̂|U) =
f(θ̂, U)

f(U)

=
f(θ̂, U |X1 = x1, ..., Xn = xx)f(X1 = x1, ..., Xn = xx)

f(U)

We see that f(θ̂, U |X1 = x1, ..., Xn = xx) is a non-negative function that only

depends of the values of x1, ..., xn, and f(X1=x1,...,Xn=xx)
f(U) cannot depend on θ since

U is a sufficient statistic.

2. E[θ̂∗] = θ
Note E[θ̂∗] = E[E[θ̂|U ]]. Recall E[X] = E[E[X|Y ]] for any random variables X
and Y . So,

E[θ̂∗] = E[E[θ̂|U ]]

= E[θ̂]

= θ ← Since θ̂ is unbiased

3. V [θ̂∗] ≤ V [θ̂]
Recall, V [X] = V [E[X|Y ]] + E[V [X|Y ]] for any X,Y . So,

V [θ̂] = V [E[θ̂|U ]] + E[V [θ̂|U ]]

= V [θ̂∗] + E[V [θ̂|U ]]

≥ V [θ̂∗]← Since V [θ̂|U ] ≥ 0
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This means, that if we have an unbiased estimator and a sufficient statistic, we can
actually make a better estimator that is also unbiased, but has at worst the same variance.
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