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Introduction Curse of Dimensionality

High Dimensional Data

Benefits

I As technology advances, it is becoming easier to collect lots of data

I More options than ever before for investigating interesting questions

I Modern research often calls for analysis of large data sets; e.g.
genetics, medical imaging, health sciences, etc (Fan et al. 2014)

Drawbacks

I Very quickly there can be too many characteristics/variables to study

I Interpretation becomes very difficult

I Computation becomes intractable
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Introduction Challenges

Challenges

Supervised vs. Unsupervised Learning

I Two main types of problem for high dimensional analysis

I Imagine a child
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Introduction Challenges

Challenges

Supervised vs. Unsupervised Learning

Supervised Learning Unsupervised Learning
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Introduction Challenges

Challenges

Supervised vs. Unsupervised Learning

I Supervised Learning
I There is a clear target to aim for, often called a response, or dependant

variable
I This target helps to guide the analysis

I Unsupervised Learning
I There is no target
I Instead, the analysis focuses on finding an overarching structure
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Introduction Goals

Goals

Dimension Reduction (Unsupervised and Supervised)

I Reduce the number of variables being considered in a way that
maximizes the amount of information being included in the analysis

I Ease computational difficulties by reducing the number of variables
being analyzed

Model Selection (Supervised)

I Identify a subset of the variables that optimally describes the
relationship being studied

I Find a parsimonious model that is easy to understand
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Introduction Goals

Goals

Everything should be made as simple as possible, but not simpler.
- Albert Einstein

Vaughan (University of Connecticut) High-Dimensional Analysis May 10, 2017 8 / 45



Introduction Goals

Workshop Objectives

I Cover the key ideas behind popular high-dimensional analysis
techniques

I Factor Analysis
I LASSO

I Present walkthroughs in R of these techniques to give hands on
experience with the software
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Factor Analysis
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Factor Analysis

Unsupervised Learning

p Variables︷ ︸︸ ︷
n

O
b

se
rv

at
io

n
s 

X11 X12 . . . X1p

X21 X22 . . . X2p
...

...
. . .

...
Xn1 Xn2 . . . Xnp

I Want to understand relationship between variables

I Identify overarching structure to the data
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Factor Analysis

Dimension Reduction

Factor Analysis

I A popular unsupervised learning approach for dimension reduction
I General Idea

I Assume there are underlying latent quantities called factors that are
unobserved, but determine the observed variables to a large degree

I We express the individual variables as linear combinations of these
underlying factors plus an error term
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Factor Analysis

Factor Analysis

I Suppose we assume there are m different factors, F1, . . .Fm
I Then formally we assume the i th variable Xi can be expressed as

Xi = αi1F1 + . . .+ αimFm + ε︸ ︷︷ ︸ ↑
communality uniqueness

I Communality: the representation of the amount of variability
explained by the latent factors

I Uniqueness: the variability unique to the particular variable

I ε is assumed to be normally distributed with a mean of 0.
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Factor Analysis

Factor Analysis

Xi = αi1F1 + . . .+ αimFm + ε

I The α values are called the factor loadings
I αij is the loading between the i th variable and the j th factor

I The loadings are used to measure the amount of variability explained
by the factors

I
∑p

i=1 α
2
ij =⇒ impact of factor j on data

I
(∑p

i=1 α
2
ij

)
/p =⇒ proportion of variance in all variables attributed to

factor j
I 1−

∑m
j=1 α

2
ij =⇒ amount of variability in variable i not explained by

underlying factors
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Factor Analysis

Exploratory Factor Analysis

I In practice, we often do not know the appropriate number of factors

I There is a Hypothesis test that can indicate if additional factors are
needed

I Try multiple numbers of factors
I For each number of factors that are tried, we aim to label the factor

based on the factor loadings
I Examine which variables load heavily from the factor
I Identify some commonality to these variables
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Factor Analysis

Example: Personality Study

I Participant self-rating on 32 personality traits
I i.e. distant, talkative, lazy, cooperative, etc...

I How we represent the “self”

persDat <- read.table("personality.csv", sep =",")

head(persDat)

## distant talkatv carelss hardwrk anxious agreebl

## 1 2 7 1 4 7 8

## 2 3 8 2 7 5 8

## 3 6 6 2 5 1 8
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Factor Analysis

Example: Personality Study

FAfit1 <- factanal(persDat, factors = 5, rotation = "none")

FAfit1

## Loadings:

## Factor1 Factor2 Factor3 Factor4 Factor5

## distant 0.618 -0.103 0.229

## talkatv -0.581 -0.140 0.516

## carelss 0.353 -0.448 0.348 0.130

## hardwrk -0.349 0.573 0.150

## anxious 0.401 0.365 0.374 0.418

## agreebl -0.265 -0.212 0.527 0.195

## tense 0.450 0.464 0.450 0.292

## kind -0.418 0.256 -0.229 0.449 0.188
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Factor Analysis

Example: Personality Study

## Factor1 Factor2 Factor3 Factor4 Factor5

## SS loadings 6.668 4.057 2.727 1.951 1.370

## Proportion Var 0.208 0.127 0.085 0.061 0.043

## Cumulative Var 0.208 0.335 0.420 0.481 0.524

Xi = αi1F1 + . . .+ αimFm + ε

I SS Loadings =⇒
∑p

i=1 α
2
ij

I Proportion Var =⇒
(∑p

i=1 α
2
ij

)
/p
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Factor Analysis

Example: Personality Study

## Uniquenesses:

## distant talkatv carelss hardwrk anxious agreebl tense

## 0.545 0.371 0.530 0.518 0.391 0.566 0.293

## kind opposng relaxed disorgn outgoin approvn shy

## 0.470 0.560 0.388 0.423 0.259 0.635 0.391

## discipl harsh persevr friendl worryin respnsi contrar

## 0.603 0.509 0.641 0.395 0.395 0.416 0.428

## sociabl lazy coopera quiet organiz criticl lax

## 0.401 0.504 0.561 0.294 0.386 0.603 0.672

## laidbck withdrw givinup easygon

## 0.527 0.363 0.594 0.596

Xi = αi1F1 + . . .+ αimFm + ε

I Uniqueness =⇒ 1−
∑m

j=1 α
2
ij
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Factor Analysis

Example: Personality Study

load = FAfit1$loadings[,1:2]

plot(load, type="n") # set up plot

text(load,labels=names(persDat),cex=.7) # add variable names
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Factor Analysis

Rotation of Factor Loadings

I Rotation =⇒ creating linear combinations of factors, resulting in
new factors

I Rotations are beneficial!
I varimax rotation forces each variable to load more heavily on a single

factor, less on others.
I Eases interpretation

I No drawback! Any rotation of a best fitting answer is also best fitting!
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Factor Analysis

Example: Personality Study

FAfit2 <- factanal(persDat, factors = 5,

rotation = "varimax")
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Factor Analysis

Example: Personality Study

Test of Sufficient Factors

FAfit2

Test of the hypothesis that 5 factors are sufficient.

The chi square statistic is 707.22 on 346 degrees of freedom.

The p-value is 5.42e-27
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Factor Analysis

Confirmatory Factor Analysis

I When we have a previous factor structure, we can test if the model is
a good fit

I Pre-specify our factors, and identify some of the loadings as 0

I Perform a fitting to estimate the remaining loadings
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Factor Analysis

Example: Holzinger and Swineford

I Famous study by Holzinger and Swineford (1939)

I Mental ability test scores of 7th and 8th graders

I Two different schools

I 9 different tests
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Factor Analysis

Example: Holzinger and Swineford

require(lavaan)

HS.model <- ' visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6

speed =~ x7 + x8 + x9 '

CFAfit <- cfa(HS.model, data = HolzingerSwineford1939)

## Estimator ML

## Minimum Function Test Statistic 85.306

## Degrees of freedom 24

## P-value (Chi-square) 0.000
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Factor Analysis

EFA vs. PCA

I Another popular technique =⇒ Principal Component Analysis (PCA)

I In PCA, construct components w/ linear combinations of the variables

I Many refer to EFA and PCA interchangeably =⇒ NOT THE SAME!
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LASSO
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LASSO

Supervised Learning

Regression
p Covariates︷ ︸︸ ︷

n
O

b
se

rv
at

io
n

s 
Y1 X11 X12 . . . X1p

Y2 X21 X22 . . . X2p
...

...
...

. . .
...

Yn Xn1 Xn2 . . . Xnp

I Aiming for (predicting) future response values

I Many covariates =⇒ hard to interpret

I Want best possible model =⇒ some covariates may hurt the model

I p > n =⇒ traditional estimation won’t work
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LASSO

Model Selection

I Suppose we have come criterion C that measures
model’s relative effectiveness

I Can compare models based on C

I For example, C = Mean Squared Error (MSE), i.e.

C (model) = MSE(model) =
n∑

i=1

(Yi − Ŷi )
2/n,

Y → response Ŷ → corresponding predictions

I To compare
MSE(Model 1) = 10 Model 1
MSE(Model 2) = 20 is better!
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LASSO

Model Selection

Model Selection

I Having such a criterion, we could compare all possible models
(combinatorial approach)

I p covariates =⇒ each one is in or out =⇒ 2p models!
Many models to compare =⇒ lots of computation

I Possibly infeasible amount of computation time
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LASSO

LASSO

Least absolute shrinkage and selection operator (LASSO) reduces the
number of candidate models to make problem feasible

I Traditional Regression =⇒ min
β

f (β)

f → loss function β → p × 1 vector
i.e. Multiple Linear Regression

I Assume Yi = β0 + Xi1β1 + . . .+ Xipβp + ε
I ε is normally distributed with mean of 0
I f (β) =

∑n
i=1 (Yi − (β0 + Xi1β1 + . . .+ Xipβp))2

I LASSO

min
β

f (β) subject to

p∑
i=1

|βi | ≤ s,

I s → tuning parameter
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LASSO

LASSO

I s → controls complexity
I s = 0 =⇒ empty model
I Large s =⇒ full model

I Path dictates subset of models to
choose from using criterion C
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LASSO

LASSO Advantages

I Honey, I shrunk the estimates!

I All estimates are shrunken towards zero

I Makes our estimates more precise in exchange for a slight bias
I Estimates below a certain threshold are forced to exactly 0

I This effectively removes the less important variables from the model
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LASSO

LASSO in Practice

I The value of s needs to be appropriately selected

I Best value will depend on Criterion C and data

Naive Approach

I Divide Data into a training data and testing data

I Several values of s are considered, generate estimates for each using
training data

I Test performance using C with the testing data for each value of s

I Value of s with the best performance is selected
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LASSO

Cross-Validation

There is a better way!

1. Divide Data into multiple (k) groups of folds

2. For i = 1, 2, . . . , k

2.1 The i th fold is the current testing fold
2.2 Build model for each candidate value of s w/ all other folds
2.3 Calculate criterion C (usually predictive Mean Squared Error) using

testing fold for each s

3. Calculate average criterion value across all values of i for each value
of s

4. Value of s with best average performance is chosen

5. Model is re-fit using entire dataset for optimal value of s
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LASSO

Cross-Validation
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LASSO

Example: Brain Injury

I Subject had suffered a traumatic brain injury

I Studying word recall performance compared to population without
brain damage

I Many covariates/tests evaluating subjects

I Not many subjects

require(glmnet)

memDat <- read.table("memory.csv", sep =",")

head(memDat)

## Y NART_FS NART_V NART_P WAB_AQ WAB_Rdg WMS_VRI_Rec

## 1 60 3 2 4 2 4 5

## 2 82 4 3 1 3 6 3

## 3 4 3 5 2 2 7 7
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LASSO

Example: Brain Injury

y <- memDat$Y

x <- as.matrix(memDat[,-1])

LASSOpath <- glmnet(y = y, x = x)

plot(LASSOpath)
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LASSO

Example: Brain Injury

LASSOfit <- cv.glmnet(y = y, x = x, nfolds = 5)

plot(LASSOfit)
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LASSO

LASSO vs. Stepwise Regression

I Another popular and well know model selection technique is Stepwise
Regression

1. Start with an empty model, constants only
2. For a fixed number of iterations, do the following

2.1 For each variable not in the most recent model, perform a fitting where
the variable is included

2.2 Calculate criterion of fit for each model generated in this way

3. Variable with optimal criterion is selected and added to the model
4. If criterion is not improved in a given iteration process terminates
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LASSO

LASSO vs. Stepwise Regression

I While stepwise regression is popular, it has many issues that lasso can
successfully navigate

I The resulting model’s R squared values may be biased to be high
I Suffers severely from correlation between the covariates
I Does not benefit much from increased sample sizes
I Does not benefit from estimate shrinkage
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LASSO

Summary

I Supervised vs. Unsupervised Learning

I Dimension Reduction & Model Selection
I Factor Analysis (Unsupervised, Dimension Reduction)

I Exploratory Factor Analysis: R function factanal
I Confirmatory Factor Analysis: R package lavaan
I EFA 6= PCA

I LASSO (Supervised, Dimension Reduction & Model Selection)
I R package glmnet
I LASSO > stepwise regression
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Thank You!

Thank You For Listening!

Vaughan (University of Connecticut) High-Dimensional Analysis May 10, 2017 44 / 45



References

Fan, J., Han, F., and Liu, H. (2014). Challenges of big data analysis.
National Science Review 1, 293–314.

Holzinger, K. J. and Swineford, F. (1939). A study in factor analysis: the
stability of a bi-factor solution. Supplementary Educational Monographs
.

Vaughan (University of Connecticut) High-Dimensional Analysis May 10, 2017 45 / 45


	Introduction
	Curse of Dimensionality
	Challenges
	Goals

	Factor Analysis
	LASSO

